Synapsins as regulators of neurotransmitter release - PubMed (original) (raw)
Review
Synapsins as regulators of neurotransmitter release
S Hilfiker et al. Philos Trans R Soc Lond B Biol Sci. 1999.
Abstract
One of the crucial issues in understanding neuronal transmission is to define the role(s) of the numerous proteins that are localized within presynaptic terminals and are thought to participate in the regulation of the synaptic vesicle life cycle. Synapsins are a multigene family of neuron-specific phosphoproteins and are the most abundant proteins on synaptic vesicles. Synapsins are able to interact in vitro with lipid and protein components of synaptic vesicles and with various cytoskeletal proteins, including actin. These and other studies have led to a model in which synapsins, by tethering synaptic vesicles to each other and to an actin-based cytoskeletal meshwork, maintain a reserve pool of vesicles in the vicinity of the active zone. Perturbation of synapsin function in a variety of preparations led to a selective disruption of this reserve pool and to an increase in synaptic depression, suggesting that the synapsin-dependent cluster of vesicles is required to sustain release of neurotransmitter in response to high levels of neuronal activity. In a recent study performed at the squid giant synapse, perturbation of synapsin function resulted in a selective disruption of the reserve pool of vesicles and in addition, led to an inhibition and slowing of the kinetics of neurotransmitter release, indicating a second role for synapsins downstream from vesicle docking. These data suggest that synapsins are involved in two distinct reactions which are crucial for exocytosis in presynaptic nerve terminals. This review describes our current understanding of the molecular mechanisms by which synapsins modulate synaptic transmission, while the increasingly well-documented role of the synapsins in synapse formation and stabilization lies beyond the scope of this review.
Similar articles
- Two sites of action for synapsin domain E in regulating neurotransmitter release.
Hilfiker S, Schweizer FE, Kao HT, Czernik AJ, Greengard P, Augustine GJ. Hilfiker S, et al. Nat Neurosci. 1998 May;1(1):29-35. doi: 10.1038/229. Nat Neurosci. 1998. PMID: 10195105 - The synapsins and the regulation of synaptic function.
Bähler M, Benfenati F, Valtorta F, Greengard P. Bähler M, et al. Bioessays. 1990 Jun;12(6):259-63. doi: 10.1002/bies.950120603. Bioessays. 1990. PMID: 2117454 Review. - Distinct pools of synaptic vesicles in neurotransmitter release.
Pieribone VA, Shupliakov O, Brodin L, Hilfiker-Rothenfluh S, Czernik AJ, Greengard P. Pieribone VA, et al. Nature. 1995 Jun 8;375(6531):493-7. doi: 10.1038/375493a0. Nature. 1995. PMID: 7777058 - Synapsins regulate use-dependent synaptic plasticity in the calyx of Held by a Ca2+/calmodulin-dependent pathway.
Sun J, Bronk P, Liu X, Han W, Südhof TC. Sun J, et al. Proc Natl Acad Sci U S A. 2006 Feb 21;103(8):2880-5. doi: 10.1073/pnas.0511300103. Epub 2006 Feb 15. Proc Natl Acad Sci U S A. 2006. PMID: 16481620 Free PMC article. - Vesicle pools and synapsins: new insights into old enigmas.
Fdez E, Hilfiker S. Fdez E, et al. Brain Cell Biol. 2006 Jun;35(2-3):107-15. doi: 10.1007/s11068-007-9013-4. Epub 2007 Oct 4. Brain Cell Biol. 2006. PMID: 17957477 Review.
Cited by
- Beta2-containing nicotinic acetylcholine receptors mediate calcium/calmodulin-dependent protein kinase-II and synapsin I protein levels in the nucleus accumbens after nicotine withdrawal in mice.
Jackson KJ, Imad Damaj M. Jackson KJ, et al. Eur J Pharmacol. 2013 Feb 15;701(1-3):1-6. doi: 10.1016/j.ejphar.2012.12.005. Epub 2013 Jan 10. Eur J Pharmacol. 2013. PMID: 23313759 Free PMC article. - Synapsin determines memory strength after punishment- and relief-learning.
Niewalda T, Michels B, Jungnickel R, Diegelmann S, Kleber J, Kähne T, Gerber B. Niewalda T, et al. J Neurosci. 2015 May 13;35(19):7487-502. doi: 10.1523/JNEUROSCI.4454-14.2015. J Neurosci. 2015. PMID: 25972175 Free PMC article. - Phosphorylation of synapsin I by cAMP-dependent protein kinase controls synaptic vesicle dynamics in developing neurons.
Bonanomi D, Menegon A, Miccio A, Ferrari G, Corradi A, Kao HT, Benfenati F, Valtorta F. Bonanomi D, et al. J Neurosci. 2005 Aug 10;25(32):7299-308. doi: 10.1523/JNEUROSCI.1573-05.2005. J Neurosci. 2005. PMID: 16093379 Free PMC article. - Regulation of transmitter release by synapsin II in mouse motor terminals.
Samigullin D, Bill CA, Coleman WL, Bykhovskaia M. Samigullin D, et al. J Physiol. 2004 Nov 15;561(Pt 1):149-58. doi: 10.1113/jphysiol.2004.073494. Epub 2004 Sep 23. J Physiol. 2004. PMID: 15388780 Free PMC article. - Temporal pattern of plasma membrane calcium ATPase 2 expression in the spinal cord correlates with the course of clinical symptoms in two rodent models of autoimmune encephalomyelitis.
Nicot A, Kurnellas M, Elkabes S. Nicot A, et al. Eur J Neurosci. 2005 May;21(10):2660-70. doi: 10.1111/j.1460-9568.2005.04086.x. Eur J Neurosci. 2005. PMID: 15926914 Free PMC article.
References
- J Cell Biol. 1990 Feb;110(2):449-59 - PubMed
- Neuron. 1988 May;1(3):201-9 - PubMed
- J Neurophysiol. 1990 Apr;63(4):701-6 - PubMed
- Neuron. 1990 Jul;5(1):19-33 - PubMed
- J Biol Chem. 1990 Jul 25;265(21):12584-95 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources