Cloning and characterization of a thermostable cellobiose dehydrogenase from Sporotrichum thermophile - PubMed (original) (raw)
. 1999 May 15;365(2):223-30.
doi: 10.1006/abbi.1999.1152.
Affiliations
- PMID: 10328816
- DOI: 10.1006/abbi.1999.1152
Cloning and characterization of a thermostable cellobiose dehydrogenase from Sporotrichum thermophile
S S Subramaniam et al. Arch Biochem Biophys. 1999.
Abstract
Cellobiose dehydrogenase (CDH) is an extracellular hemoflavoenzyme produced by several wood-degrading fungi. CDH contains one heme b and one FAD per molecule and oxidizes cellobiose to cellobionolactone in the presence of cytochrome c. In this report, a thermostable CDH from the thermophilic ascomycete Sporotrichum thermophile has been purified, cloned, and characterized. The temperature optimum for this CDH reaction was 60 degrees C, and the activation energy for the reaction was 26.3 kJ/mol. The Km and kcat were temperature-dependent and increased as reaction temperature increased. These kinetic properties prove that this CDH is truly thermophilic. A 2.8-kb cDNA was isolated by screening an expression library of S. thermophile with a polyclonal antisera raised against Phanerochaete chrysosporium CDH. The cDNA encoded an 807-amino-acid protein with a predicted mass of 86,332 Da. S. thermophile CDH is organized into three domains, an N-terminal flavin domain, a middle heme domain, and a C-terminal cellulose-binding domain, which shows sequence similarity with the cellulose-binding domains of endoglucanases and cellobiohydrolases from Trichoderma reesei. Comparison with the CDH sequences of P. chrysosporium and Trametes versicolor identified Met 95 and His 143 as potential heme coordinations. EFIG, LGGPM, and VNSTH motifs in the heme domain and the XRXPXTDXPSXDGXRY motif in the flavin domain were identified as CDH-specific motifs. With regard to the amino acid composition, S. thermophile CDH has more disulfide linkages and acidic and basic amino acids compared to CDHs from P. chrysosporium and T. versicolor.
Copyright 1999 Academic Press.
Similar articles
- Cloning of a cDNA encoding cellobiose dehydrogenase, a hemoflavoenzyme from Phanerochaete chrysosporium.
Li B, Nagalla SR, Renganathan V. Li B, et al. Appl Environ Microbiol. 1996 Apr;62(4):1329-35. doi: 10.1128/aem.62.4.1329-1335.1996. Appl Environ Microbiol. 1996. PMID: 8919793 Free PMC article. - Electron transfer chain reaction of the extracellular flavocytochrome cellobiose dehydrogenase from the basidiomycete Phanerochaete chrysosporium.
Igarashi K, Yoshida M, Matsumura H, Nakamura N, Ohno H, Samejima M, Nishino T. Igarashi K, et al. FEBS J. 2005 Jun;272(11):2869-77. doi: 10.1111/j.1742-4658.2005.04707.x. FEBS J. 2005. PMID: 15943818 - Site-directed mutagenesis of the heme axial ligands in the hemoflavoenzyme cellobiose dehydrogenase.
Rotsaert FA, Li B, Renganathan V, Gold MH. Rotsaert FA, et al. Arch Biochem Biophys. 2001 Jun 15;390(2):206-14. doi: 10.1006/abbi.2001.2362. Arch Biochem Biophys. 2001. PMID: 11396923 - A critical review of cellobiose dehydrogenases.
Henriksson G, Johansson G, Pettersson G. Henriksson G, et al. J Biotechnol. 2000 Mar 10;78(2):93-113. doi: 10.1016/s0168-1656(00)00206-6. J Biotechnol. 2000. PMID: 10725534 Review. - Cellobiose dehydrogenase--a flavocytochrome from wood-degrading, phytopathogenic and saprotropic fungi.
Zamocky M, Ludwig R, Peterbauer C, Hallberg BM, Divne C, Nicholls P, Haltrich D. Zamocky M, et al. Curr Protein Pept Sci. 2006 Jun;7(3):255-80. doi: 10.2174/138920306777452367. Curr Protein Pept Sci. 2006. PMID: 16787264 Review.
Cited by
- Optimization of production, purification and lyophilisation of cellobiose dehydrogenase by Sclerotium rolfsii.
Fischer C, Krause A, Kleinschmidt T. Fischer C, et al. BMC Biotechnol. 2014 Nov 19;14:97. doi: 10.1186/s12896-014-0097-5. BMC Biotechnol. 2014. PMID: 25407159 Free PMC article. - Cellulose degradation by oxidative enzymes.
Dimarogona M, Topakas E, Christakopoulos P. Dimarogona M, et al. Comput Struct Biotechnol J. 2012 Nov 9;2:e201209015. doi: 10.5936/csbj.201209015. eCollection 2012. Comput Struct Biotechnol J. 2012. PMID: 24688656 Free PMC article. Review. - Genomics review of holocellulose deconstruction by aspergilli.
Segato F, Damásio AR, de Lucas RC, Squina FM, Prade RA. Segato F, et al. Microbiol Mol Biol Rev. 2014 Dec;78(4):588-613. doi: 10.1128/MMBR.00019-14. Microbiol Mol Biol Rev. 2014. PMID: 25428936 Free PMC article. Review. - Genomic insights into the fungal lignocellulolytic system of Myceliophthora thermophila.
Karnaouri A, Topakas E, Antonopoulou I, Christakopoulos P. Karnaouri A, et al. Front Microbiol. 2014 Jun 18;5:281. doi: 10.3389/fmicb.2014.00281. eCollection 2014. Front Microbiol. 2014. PMID: 24995002 Free PMC article. Review. - Catalytic properties and classification of cellobiose dehydrogenases from ascomycetes.
Harreither W, Sygmund C, Augustin M, Narciso M, Rabinovich ML, Gorton L, Haltrich D, Ludwig R. Harreither W, et al. Appl Environ Microbiol. 2011 Mar;77(5):1804-15. doi: 10.1128/AEM.02052-10. Epub 2011 Jan 7. Appl Environ Microbiol. 2011. PMID: 21216904 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous