Calmodulin supports both inactivation and facilitation of L-type calcium channels - PubMed (original) (raw)
. 1999 May 13;399(6732):159-62.
doi: 10.1038/20200.
Affiliations
- PMID: 10335846
- DOI: 10.1038/20200
Calmodulin supports both inactivation and facilitation of L-type calcium channels
R D Zühlke et al. Nature. 1999.
Abstract
L-type Ca2+ channels support Ca2+ entry into cells, which triggers cardiac contraction, controls hormone secretion from endocrine cells and initiates transcriptional events that support learning and memory. These channels are examples of molecular signal-transduction units that regulate themselves through their own activity. Among the many types of voltage-gated Ca2+ channel, L-type Ca2+ channels particularly display inactivation and facilitation, both of which are closely linked to the earlier entry of Ca2+ ions. Both forms of autoregulation have a significant impact on the amount of Ca2+ that enters the cell during repetitive activity, with major consequences downstream. Despite extensive biophysical analysis, the molecular basis of autoregulation remains unclear, although a putative Ca2+-binding EF-hand motif and a nearby consensus calmodulin-binding isoleucine-glutamine ('IQ') motif in the carboxy terminus of the alpha1C channel subunit have been implicated. Here we show that calmodulin is a critical Ca2+ sensor for both inactivation and facilitation, and that the nature of the modulatory effect depends on residues within the IQ motif important for calmodulin binding. Replacement of the native isoleucine by alanine removed Ca2+-dependent inactivation and unmasked a strong facilitation; conversion of the same residue to glutamate eliminated both forms of autoregulation. These results indicate that the same calmodulin molecule may act as a Ca2+ sensor for both positive and negative modulation.
Comment in
- Cell signalling. Calmodulin at the channel gate.
Ehlers MD, Augustine GJ. Ehlers MD, et al. Nature. 1999 May 13;399(6732):105, 107-8. doi: 10.1038/20079. Nature. 1999. PMID: 10335837 No abstract available.
Similar articles
- Critical determinants of Ca(2+)-dependent inactivation within an EF-hand motif of L-type Ca(2+) channels.
Peterson BZ, Lee JS, Mulle JG, Wang Y, de Leon M, Yue DT. Peterson BZ, et al. Biophys J. 2000 Apr;78(4):1906-20. doi: 10.1016/S0006-3495(00)76739-7. Biophys J. 2000. PMID: 10733970 Free PMC article. - Regulation of voltage-gated Ca2+ channels by calmodulin.
Halling DB, Aracena-Parks P, Hamilton SL. Halling DB, et al. Sci STKE. 2005 Dec 20;2005(315):re15. doi: 10.1126/stke.3152005re15. Sci STKE. 2005. PMID: 16369047 Corrected and republished. Review. - Switching off calcium-dependent inactivation in L-type calcium channels by an autoinhibitory domain.
Wahl-Schott C, Baumann L, Cuny H, Eckert C, Griessmeier K, Biel M. Wahl-Schott C, et al. Proc Natl Acad Sci U S A. 2006 Oct 17;103(42):15657-62. doi: 10.1073/pnas.0604621103. Epub 2006 Oct 6. Proc Natl Acad Sci U S A. 2006. PMID: 17028172 Free PMC article. - Calmodulin bifurcates the local Ca2+ signal that modulates P/Q-type Ca2+ channels.
DeMaria CD, Soong TW, Alseikhan BA, Alvania RS, Yue DT. DeMaria CD, et al. Nature. 2001 May 24;411(6836):484-9. doi: 10.1038/35078091. Nature. 2001. PMID: 11373682 - Ca2+ channel moving tail: link between Ca2+-induced inactivation and Ca2+ signal transduction.
Soldatov NM. Soldatov NM. Trends Pharmacol Sci. 2003 Apr;24(4):167-71. doi: 10.1016/S0165-6147(03)00065-8. Trends Pharmacol Sci. 2003. PMID: 12707002 Review.
Cited by
- Membrane potential and Ca2+ concentration dependence on pressure and vasoactive agents in arterial smooth muscle: A model.
Karlin A. Karlin A. J Gen Physiol. 2015 Jul;146(1):79-96. doi: 10.1085/jgp.201511380. J Gen Physiol. 2015. PMID: 26123196 Free PMC article. - Hypoxic regulation of cardiac Ca2+ channel: possible role of haem oxygenase.
Rosa AO, Movafagh S, Cleemann L, Morad M. Rosa AO, et al. J Physiol. 2012 Sep 1;590(17):4223-37. doi: 10.1113/jphysiol.2012.236570. Epub 2012 Jul 2. J Physiol. 2012. PMID: 22753548 Free PMC article. - Ca(2+) entry into neurons is facilitated by cooperative gating of clustered CaV1.3 channels.
Moreno CM, Dixon RE, Tajada S, Yuan C, Opitz-Araya X, Binder MD, Santana LF. Moreno CM, et al. Elife. 2016 May 17;5:e15744. doi: 10.7554/eLife.15744. Elife. 2016. PMID: 27187148 Free PMC article. - A rendezvous with the queen of ion channels: Three decades of ion channel research by David T Yue and his Calcium Signals Laboratory.
Dick IE, Limpitikul WB, Niu J, Banerjee R, Issa JB, Ben-Johny M, Adams PJ, Kang PW, Lee SR, Sang L, Yang W, Babich J, Zhang M, Bazazzi H, Yue NC, Tomaselli GF. Dick IE, et al. Channels (Austin). 2016;10(1):20-32. doi: 10.1080/19336950.2015.1051272. Epub 2015 Jul 15. Channels (Austin). 2016. PMID: 26176690 Free PMC article. - A protein phosphatase 2calpha-Ca2+ channel complex for dephosphorylation of neuronal Ca2+ channels phosphorylated by protein kinase C.
Li D, Wang F, Lai M, Chen Y, Zhang JF. Li D, et al. J Neurosci. 2005 Feb 23;25(8):1914-23. doi: 10.1523/JNEUROSCI.4790-04.2005. J Neurosci. 2005. PMID: 15728831 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous