Inhibition of caspase-1 slows disease progression in a mouse model of Huntington's disease - PubMed (original) (raw)
. 1999 May 20;399(6733):263-7.
doi: 10.1038/20446.
M Li, J P Vonsattel, L J Andrews, S Q Khan, W M Chung, A S Frey, A S Menon, X J Li, P E Stieg, J Yuan, J B Penney, A B Young, J H Cha, R M Friedlander
Affiliations
- PMID: 10353249
- DOI: 10.1038/20446
Inhibition of caspase-1 slows disease progression in a mouse model of Huntington's disease
V O Ona et al. Nature. 1999.
Abstract
Huntington's disease is an autosomal-dominant progressive neurodegenerative disorder resulting in specific neuronal loss and dysfunction in the striatum and cortex. The disease is universally fatal, with a mean survival following onset of 15-20 years and, at present, there is no effective treatment. The mutation in patients with Huntington's disease is an expanded CAG/polyglutamine repeat in huntingtin, a protein of unknown function with a relative molecular mass of 350,000 (M(r) 350K). The length of the CAG/polyglutamine repeat is inversely correlated with the age of disease onset. The molecular pathways mediating the neuropathology of Huntington's disease are poorly understood. Transgenic mice expressing exon 1 of the human huntingtin gene with an expanded CAG/polyglutamine repeat develop a progressive syndrome with many of the characteristics of human Huntington's disease. Here we demonstrate evidence of caspase-1 activation in the brains of mice and humans with the disease. In this transgenic mouse model of Huntington's disease, expression of a dominant-negative caspase-1 mutant extends survival and delays the appearance of neuronal inclusions, neurotransmitter receptor alterations and onset of symptoms, indicating that caspase-1 is important in the pathogenesis of the disease. In addition, we demonstrate that intracerebroventricular administration of a caspase inhibitor delays disease progression and mortality in the mouse model of Huntington's disease.
Comment in
- Apoptosis. Dead end for neurodegeneration?
Haass C. Haass C. Nature. 1999 May 20;399(6733):204-5, 207. doi: 10.1038/20314. Nature. 1999. PMID: 10353238 No abstract available.
Similar articles
- Specific caspase interactions and amplification are involved in selective neuronal vulnerability in Huntington's disease.
Hermel E, Gafni J, Propp SS, Leavitt BR, Wellington CL, Young JE, Hackam AS, Logvinova AV, Peel AL, Chen SF, Hook V, Singaraja R, Krajewski S, Goldsmith PC, Ellerby HM, Hayden MR, Bredesen DE, Ellerby LM. Hermel E, et al. Cell Death Differ. 2004 Apr;11(4):424-38. doi: 10.1038/sj.cdd.4401358. Cell Death Differ. 2004. PMID: 14713958 - Transgenic mice expressing mutated full-length HD cDNA: a paradigm for locomotor changes and selective neuronal loss in Huntington's disease.
Reddy PH, Charles V, Williams M, Miller G, Whetsell WO Jr, Tagle DA. Reddy PH, et al. Philos Trans R Soc Lond B Biol Sci. 1999 Jun 29;354(1386):1035-45. doi: 10.1098/rstb.1999.0456. Philos Trans R Soc Lond B Biol Sci. 1999. PMID: 10434303 Free PMC article. - Caspase cleavage of mutant huntingtin precedes neurodegeneration in Huntington's disease.
Wellington CL, Ellerby LM, Gutekunst CA, Rogers D, Warby S, Graham RK, Loubser O, van Raamsdonk J, Singaraja R, Yang YZ, Gafni J, Bredesen D, Hersch SM, Leavitt BR, Roy S, Nicholson DW, Hayden MR. Wellington CL, et al. J Neurosci. 2002 Sep 15;22(18):7862-72. doi: 10.1523/JNEUROSCI.22-18-07862.2002. J Neurosci. 2002. PMID: 12223539 Free PMC article. - Caspases in Huntington's disease.
Sanchez Mejia RO, Friedlander RM. Sanchez Mejia RO, et al. Neuroscientist. 2001 Dec;7(6):480-9. doi: 10.1177/107385840100700604. Neuroscientist. 2001. PMID: 11765125 Review. - Mouse models of Huntington's disease.
Menalled LB, Chesselet MF. Menalled LB, et al. Trends Pharmacol Sci. 2002 Jan;23(1):32-9. doi: 10.1016/s0165-6147(00)01884-8. Trends Pharmacol Sci. 2002. PMID: 11804649 Review.
Cited by
- Parthenolide ameliorates 3-nitropropionic acid-induced Huntington's disease-like aberrations via modulating NLRP3 inflammasome, reducing microglial activation and inducing astrocyte shifting.
Noureldeen ME, Shahin NN, Amin HAA, El-Sawalhi MM, Ghaiad HR. Noureldeen ME, et al. Mol Med. 2024 Sep 26;30(1):158. doi: 10.1186/s10020-024-00917-5. Mol Med. 2024. PMID: 39327568 Free PMC article. - Challenges and Future Perspectives in Modeling Neurodegenerative Diseases Using Organ-on-a-Chip Technology.
Pramotton FM, Spitz S, Kamm RD. Pramotton FM, et al. Adv Sci (Weinh). 2024 Aug;11(32):e2403892. doi: 10.1002/advs.202403892. Epub 2024 Jun 23. Adv Sci (Weinh). 2024. PMID: 38922799 Free PMC article. Review. - Large animal models for Huntington's disease research.
Han B, Liang W, Li XJ, Li S, Yan S, Tu Z. Han B, et al. Zool Res. 2024 Mar 18;45(2):275-283. doi: 10.24272/j.issn.2095-8137.2023.199. Zool Res. 2024. PMID: 38485497 Free PMC article. Review. - Longitudinal modeling of human neuronal aging reveals the contribution of the RCAN1-TFEB pathway to Huntington's disease neurodegeneration.
Lee SW, Oh YM, Victor MB, Yang Y, Chen S, Strunilin I, Dahiya S, Dolle RE, Pak SC, Silverman GA, Perlmutter DH, Yoo AS. Lee SW, et al. Nat Aging. 2024 Jan;4(1):95-109. doi: 10.1038/s43587-023-00538-3. Epub 2023 Dec 8. Nat Aging. 2024. PMID: 38066314 Free PMC article. - Methotrexate-conjugated zinc oxide nanoparticles exert a substantially improved cytotoxic effect on lung cancer cells by inducing apoptosis.
Mishra P, Ali Ahmad MF, Al-Keridis LA, Saeed M, Alshammari N, Alabdallah NM, Tiwari RK, Ahmad A, Verma M, Fatima S, Ansari IA. Mishra P, et al. Front Pharmacol. 2023 Oct 17;14:1194578. doi: 10.3389/fphar.2023.1194578. eCollection 2023. Front Pharmacol. 2023. PMID: 37915418 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases