The methyl-CpG binding transcriptional repressor MeCP2 stably associates with nucleosomal DNA - PubMed (original) (raw)
. 1999 Jun 1;38(22):7008-18.
doi: 10.1021/bi990224y.
Affiliations
- PMID: 10353812
- DOI: 10.1021/bi990224y
The methyl-CpG binding transcriptional repressor MeCP2 stably associates with nucleosomal DNA
S P Chandler et al. Biochemistry. 1999.
Abstract
We have investigated the interactions of the methyl-CpG binding transcriptional repressor MeCP2 with nucleosomal DNA. We find that MeCP2 forms discrete complexes with nucleosomal DNA associating with methyl-CpGs exposed in the major groove via the methyl-CpG-binding domain (MBD). In addition to the MBD, the carboxyl-terminal segment of MeCP2 facilitates binding both to naked DNA and to the nucleosome core. These observations provide a molecular mechanism by which MeCP2 can gain access to chromatin in order to target corepressor complexes that further modify chromatin structure.
Similar articles
- The solution structure of the domain from MeCP2 that binds to methylated DNA.
Wakefield RI, Smith BO, Nan X, Free A, Soteriou A, Uhrin D, Bird AP, Barlow PN. Wakefield RI, et al. J Mol Biol. 1999 Sep 3;291(5):1055-65. doi: 10.1006/jmbi.1999.3023. J Mol Biol. 1999. PMID: 10518942 - MeCP2 and other methyl-CpG binding proteins.
Jørgensen HF, Bird A. Jørgensen HF, et al. Ment Retard Dev Disabil Res Rev. 2002;8(2):87-93. doi: 10.1002/mrdd.10021. Ment Retard Dev Disabil Res Rev. 2002. PMID: 12112733 Review. - Methyl CpG-binding proteins and transcriptional repression.
Wade PA. Wade PA. Bioessays. 2001 Dec;23(12):1131-7. doi: 10.1002/bies.10008. Bioessays. 2001. PMID: 11746232 Review. - Methyl-CpG binding proteins in the nervous system.
Fan G, Hutnick L. Fan G, et al. Cell Res. 2005 Apr;15(4):255-61. doi: 10.1038/sj.cr.7290294. Cell Res. 2005. PMID: 15857580 Review. - Tight interaction between densely methylated DNA fragments and the methyl-CpG binding domain of the rat MeCP2 protein attached to a solid support.
Shiraishi M, Sekiguchi A, Chuu YH, Sekiya T. Shiraishi M, et al. Biol Chem. 1999 Sep;380(9):1127-31. doi: 10.1515/BC.1999.141. Biol Chem. 1999. PMID: 10543452
Cited by
- Epigenetics in rare neurological diseases.
Roberts CT, Arezoumand KS, Kadar Shahib A, Davie JR, Rastegar M. Roberts CT, et al. Front Cell Dev Biol. 2024 Jul 23;12:1413248. doi: 10.3389/fcell.2024.1413248. eCollection 2024. Front Cell Dev Biol. 2024. PMID: 39108836 Free PMC article. Review. - Non-canonical C-terminal variant of MeCP2 R344W exhibits enhanced degradation rate.
Chai Y, Lee SSY, Shillington A, Du X, Fok CKM, Yeung KC, Siu GKY, Yuan S, Zheng Z, Tsang HWS, Gu S, Chen Y, Ye T, Ip JPK. Chai Y, et al. IBRO Neurosci Rep. 2023 Sep 22;15:218-224. doi: 10.1016/j.ibneur.2023.09.007. eCollection 2023 Dec. IBRO Neurosci Rep. 2023. PMID: 37822516 Free PMC article. - Mecp2 protects kidney from ischemia-reperfusion injury through transcriptional repressing IL-6/STAT3 signaling.
Wang J, Xiong M, Fan Y, Liu C, Wang Q, Yang D, Yuan Y, Huang Y, Wang S, Zhang Y, Niu S, Yue J, Su H, Zhang C, Chen H, Zheng L, Huang K. Wang J, et al. Theranostics. 2022 May 9;12(8):3896-3910. doi: 10.7150/thno.72515. eCollection 2022. Theranostics. 2022. PMID: 35664078 Free PMC article. - Differential Sensitivity of the Protein Translation Initiation Machinery and mTOR Signaling to MECP2 Gain- and Loss-of-Function Involves MeCP2 Isoform-Specific Homeostasis in the Brain.
Buist M, El Tobgy N, Shevkoplyas D, Genung M, Sher AA, Pejhan S, Rastegar M. Buist M, et al. Cells. 2022 Apr 24;11(9):1442. doi: 10.3390/cells11091442. Cells. 2022. PMID: 35563748 Free PMC article. - Bacterial N4-methylcytosine as an epigenetic mark in eukaryotic DNA.
Rodriguez F, Yushenova IA, DiCorpo D, Arkhipova IR. Rodriguez F, et al. Nat Commun. 2022 Feb 28;13(1):1072. doi: 10.1038/s41467-022-28471-w. Nat Commun. 2022. PMID: 35228526 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources