The organization of replication and transcription - PubMed (original) (raw)
Review
The organization of replication and transcription
P R Cook. Science. 1999.
Abstract
Models for replication and transcription often display polymerases that track like locomotives along their DNA templates. However, recent evidence supports an alternative model in which DNA and RNA polymerases are immobilized by attachment to larger structures, where they reel in their templates and extrude newly made nucleic acids. These polymerases do not act independently; they are concentrated in discrete "factories," where they work together on many different templates. Evidence for models involving tracking and immobile polymerases is reviewed.
Similar articles
- Fixing the model for transcription: the DNA moves, not the polymerase.
Papantonis A, Cook PR. Papantonis A, et al. Transcription. 2011 Jan-Feb;2(1):41-4. doi: 10.4161/trns.2.1.14275. Transcription. 2011. PMID: 21326910 Free PMC article. Review. - Differential effect of neomycin on DNA dependent -DNA and RNA synthesis in vitro.
Dube DK, Palit S. Dube DK, et al. Biochem Biophys Res Commun. 1981 Sep 16;102(1):378-88. doi: 10.1016/0006-291x(81)91532-1. Biochem Biophys Res Commun. 1981. PMID: 7030341 No abstract available. - Molecular replication.
Orgel LE. Orgel LE. Nature. 1992 Jul 16;358(6383):203-9. doi: 10.1038/358203a0. Nature. 1992. PMID: 1630488 Review. - Bacteriophage phi29 DNA replication arrest caused by codirectional collisions with the transcription machinery.
Elías-Arnanz M, Salas M. Elías-Arnanz M, et al. EMBO J. 1997 Sep 15;16(18):5775-83. doi: 10.1093/emboj/16.18.5775. EMBO J. 1997. PMID: 9312035 Free PMC article. - When polymerases collide: replication and the transcriptional organization of the E. coli chromosome.
Brewer BJ. Brewer BJ. Cell. 1988 Jun 3;53(5):679-86. doi: 10.1016/0092-8674(88)90086-4. Cell. 1988. PMID: 3286014 Review. No abstract available.
Cited by
- Transcription regulation by biomolecular condensates.
Pei G, Lyons H, Li P, Sabari BR. Pei G, et al. Nat Rev Mol Cell Biol. 2024 Nov 8. doi: 10.1038/s41580-024-00789-x. Online ahead of print. Nat Rev Mol Cell Biol. 2024. PMID: 39516712 Review. - Sequence and structural determinants of RNAPII CTD phase-separation and phosphorylation by CDK7.
Linhartova K, Falginella FL, Matl M, Sebesta M, Vácha R, Stefl R. Linhartova K, et al. Nat Commun. 2024 Oct 24;15(1):9163. doi: 10.1038/s41467-024-53305-2. Nat Commun. 2024. PMID: 39448580 Free PMC article. - Statistical modeling and significance estimation of multi-way chromatin contacts with HyperloopFinder.
Wang W, Ye Y, Gao L. Wang W, et al. Brief Bioinform. 2024 May 23;25(4):bbae341. doi: 10.1093/bib/bbae341. Brief Bioinform. 2024. PMID: 39003726 Free PMC article. - Long non-coding RNAs: roles in cellular stress responses and epigenetic mechanisms regulating chromatin.
Nickerson JA, Momen-Heravi F. Nickerson JA, et al. Nucleus. 2024 Dec;15(1):2350180. doi: 10.1080/19491034.2024.2350180. Epub 2024 May 22. Nucleus. 2024. PMID: 38773934 Free PMC article. Review. - Integrative analysis of DNA replication origins and ORC-/MCM-binding sites in human cells reveals a lack of overlap.
Tian M, Wang Z, Su Z, Shibata E, Shibata Y, Dutta A, Zang C. Tian M, et al. Elife. 2024 Apr 3;12:RP89548. doi: 10.7554/eLife.89548. Elife. 2024. PMID: 38567819 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources