A YAC mouse model for Huntington's disease with full-length mutant huntingtin, cytoplasmic toxicity, and selective striatal neurodegeneration - PubMed (original) (raw)
doi: 10.1016/s0896-6273(00)80764-3.
N Agopyan, C A Gutekunst, B R Leavitt, F LePiane, R Singaraja, D J Smith, N Bissada, K McCutcheon, J Nasir, L Jamot, X J Li, M E Stevens, E Rosemond, J C Roder, A G Phillips, E M Rubin, S M Hersch, M R Hayden
Affiliations
- PMID: 10402204
- DOI: 10.1016/s0896-6273(00)80764-3
Free article
A YAC mouse model for Huntington's disease with full-length mutant huntingtin, cytoplasmic toxicity, and selective striatal neurodegeneration
J G Hodgson et al. Neuron. 1999 May.
Free article
Abstract
We have produced yeast artificial chromosome (YAC) transgenic mice expressing normal (YAC18) and mutant (YAC46 and YAC72) huntingtin (htt) in a developmental and tissue-specific manner identical to that observed in Huntington's disease (HD). YAC46 and YAC72 mice show early electrophysiological abnormalities, indicating cytoplasmic dysfunction prior to observed nuclear inclusions or neurodegeneration. By 12 months of age, YAC72 mice have a selective degeneration of medium spiny neurons in the lateral striatum associated with the translocation of N-terminal htt fragments to the nucleus. Neurodegeneration can be present in the absence of macro- or microaggregates, clearly showing that aggregates are not essential to initiation of neuronal death. These mice demonstrate that initial neuronal cytoplasmic toxicity is followed by cleavage of htt, nuclear translocation of htt N-terminal fragments, and selective neurodegeneration.
Similar articles
- Huntington disease: new insights on the role of huntingtin cleavage.
Wellington CL, Leavitt BR, Hayden MR. Wellington CL, et al. J Neural Transm Suppl. 2000;(58):1-17. doi: 10.1007/978-3-7091-6284-2_1. J Neural Transm Suppl. 2000. PMID: 11128600 Review. - Selective degeneration in YAC mouse models of Huntington disease.
Van Raamsdonk JM, Warby SC, Hayden MR. Van Raamsdonk JM, et al. Brain Res Bull. 2007 Apr 30;72(2-3):124-31. doi: 10.1016/j.brainresbull.2006.10.018. Epub 2006 Nov 16. Brain Res Bull. 2007. PMID: 17352936 Review. - Specific caspase interactions and amplification are involved in selective neuronal vulnerability in Huntington's disease.
Hermel E, Gafni J, Propp SS, Leavitt BR, Wellington CL, Young JE, Hackam AS, Logvinova AV, Peel AL, Chen SF, Hook V, Singaraja R, Krajewski S, Goldsmith PC, Ellerby HM, Hayden MR, Bredesen DE, Ellerby LM. Hermel E, et al. Cell Death Differ. 2004 Apr;11(4):424-38. doi: 10.1038/sj.cdd.4401358. Cell Death Differ. 2004. PMID: 14713958 - Full length mutant huntingtin is required for altered Ca2+ signaling and apoptosis of striatal neurons in the YAC mouse model of Huntington's disease.
Zhang H, Li Q, Graham RK, Slow E, Hayden MR, Bezprozvanny I. Zhang H, et al. Neurobiol Dis. 2008 Jul;31(1):80-8. doi: 10.1016/j.nbd.2008.03.010. Epub 2008 Apr 16. Neurobiol Dis. 2008. PMID: 18502655 Free PMC article. - Adenovirus vector-based in vitro neuronal cell model for Huntington's disease with human disease-like differential aggregation and degeneration.
Dong X, Zong S, Witting A, Lindenberg KS, Kochanek S, Huang B. Dong X, et al. J Gene Med. 2012 Jul;14(7):468-81. doi: 10.1002/jgm.2641. J Gene Med. 2012. PMID: 22700462
Cited by
- Metabolomics: An Emerging "Omics" Platform for Systems Biology and Its Implications for Huntington Disease Research.
Akyol S, Ashrafi N, Yilmaz A, Turkoglu O, Graham SF. Akyol S, et al. Metabolites. 2023 Dec 18;13(12):1203. doi: 10.3390/metabo13121203. Metabolites. 2023. PMID: 38132886 Free PMC article. Review. - Role of cerebral cortex in the neuropathology of Huntington's disease.
Estrada-Sánchez AM, Rebec GV. Estrada-Sánchez AM, et al. Front Neural Circuits. 2013 Feb 18;7:19. doi: 10.3389/fncir.2013.00019. eCollection 2013. Front Neural Circuits. 2013. PMID: 23423362 Free PMC article. Review. - A fully humanized transgenic mouse model of Huntington disease.
Southwell AL, Warby SC, Carroll JB, Doty CN, Skotte NH, Zhang W, Villanueva EB, Kovalik V, Xie Y, Pouladi MA, Collins JA, Yang XW, Franciosi S, Hayden MR. Southwell AL, et al. Hum Mol Genet. 2013 Jan 1;22(1):18-34. doi: 10.1093/hmg/dds397. Epub 2012 Sep 21. Hum Mol Genet. 2013. PMID: 23001568 Free PMC article. - Proteasome-mediated proteolysis of the polyglutamine-expanded androgen receptor is a late event in spinal and bulbar muscular atrophy (SBMA) pathogenesis.
Heine EM, Berger TR, Pluciennik A, Orr CR, Zboray L, Merry DE. Heine EM, et al. J Biol Chem. 2015 May 15;290(20):12572-84. doi: 10.1074/jbc.M114.617894. Epub 2015 Mar 20. J Biol Chem. 2015. PMID: 25795778 Free PMC article. - Hippocampal neurogenesis, cognitive deficits and affective disorder in Huntington's disease.
Ransome MI, Renoir T, Hannan AJ. Ransome MI, et al. Neural Plast. 2012;2012:874387. doi: 10.1155/2012/874387. Epub 2012 Jun 27. Neural Plast. 2012. PMID: 22830053 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Research Materials