Heterotrimerization of PII-like signalling proteins: implications for PII-mediated signal transduction systems - PubMed (original) (raw)
Heterotrimerization of PII-like signalling proteins: implications for PII-mediated signal transduction systems
K Forchhammer et al. Mol Microbiol. 1999 Jul.
Free article
Abstract
PII-like signalling molecules are trimeric proteins composed of 12-13 kDa polypeptides encoded by the glnB gene family. Heterologous expression of a cyanobacterial glnB gene in Escherichia coli leads to an inactivation of E. coli's own PII signalling system. In the present work, we show that this effect is caused by the formation of functionally inactive heterotrimers between the cyanobacterial glnB gene product and the E. coli PII paralogues GlnB and GlnK. This led to the discovery that GlnK and GlnB of E. coli also form heterotrimers with each other. The influence of the oligomerization partner on the function of the single subunit was studied using heterotrimerization with the Synechococcus PII protein. Uridylylation of GlnB and GlnK was less efficient but still possible within these heterotrimers. In contrast, the ability of GlnB-UMP to stimulate the adenylyl-removing activity of GlnE (glutamine synthetase adenylyltransferase/removase) was almost completely abolished, confirming that rapid deadenylylation of glutamine synthetase upon nitrogen stepdown requires functional homotrimeric GlnB protein. Remarkably, however, rapid adenylylation of glutamine synthetase upon exposing nitrogen-starved cells to ammonium was shown to occur in the absence of a functional GlnB/GlnK signalling system as efficiently as in its presence.
Similar articles
- Role of the GlnK signal transduction protein in the regulation of nitrogen assimilation in Escherichia coli.
Atkinson MR, Ninfa AJ. Atkinson MR, et al. Mol Microbiol. 1998 Jul;29(2):431-47. doi: 10.1046/j.1365-2958.1998.00932.x. Mol Microbiol. 1998. PMID: 9720863 - The Escherichia coli signal transducers PII (GlnB) and GlnK form heterotrimers in vivo: fine tuning the nitrogen signal cascade.
van Heeswijk WC, Wen D, Clancy P, Jaggi R, Ollis DL, Westerhoff HV, Vasudevan SG. van Heeswijk WC, et al. Proc Natl Acad Sci U S A. 2000 Apr 11;97(8):3942-7. doi: 10.1073/pnas.97.8.3942. Proc Natl Acad Sci U S A. 2000. PMID: 10760266 Free PMC article. - The pivotal regulator GlnB of Escherichia coli is engaged in subtle and context-dependent control.
van Heeswijk WC, Molenaar D, Hoving S, Westerhoff HV. van Heeswijk WC, et al. FEBS J. 2009 Jun;276(12):3324-40. doi: 10.1111/j.1742-4658.2009.07058.x. Epub 2009 May 7. FEBS J. 2009. PMID: 19438718 - Nitrogen regulation in bacteria and archaea.
Leigh JA, Dodsworth JA. Leigh JA, et al. Annu Rev Microbiol. 2007;61:349-77. doi: 10.1146/annurev.micro.61.080706.093409. Annu Rev Microbiol. 2007. PMID: 17506680 Review. - Global carbon/nitrogen control by PII signal transduction in cyanobacteria: from signals to targets.
Forchhammer K. Forchhammer K. FEMS Microbiol Rev. 2004 Jun;28(3):319-33. doi: 10.1016/j.femsre.2003.11.001. FEMS Microbiol Rev. 2004. PMID: 15449606 Review.
Cited by
- Metabolic analysis of Chlorobium chlorochromatii CaD3 reveals clues of the symbiosis in 'Chlorochromatium aggregatum'.
Cerqueda-García D, Martínez-Castilla LP, Falcón LI, Delaye L. Cerqueda-García D, et al. ISME J. 2014 May;8(5):991-8. doi: 10.1038/ismej.2013.207. Epub 2013 Nov 28. ISME J. 2014. PMID: 24285361 Free PMC article. - GlnK Facilitates the Dynamic Regulation of Bacterial Nitrogen Assimilation.
Gosztolai A, Schumacher J, Behrends V, Bundy JG, Heydenreich F, Bennett MH, Buck M, Barahona M. Gosztolai A, et al. Biophys J. 2017 May 23;112(10):2219-2230. doi: 10.1016/j.bpj.2017.04.012. Biophys J. 2017. PMID: 28538158 Free PMC article. - Metabolic context and possible physiological themes of sigma(54)-dependent genes in Escherichia coli.
Reitzer L, Schneider BL. Reitzer L, et al. Microbiol Mol Biol Rev. 2001 Sep;65(3):422-44, table of contents. doi: 10.1128/MMBR.65.3.422-444.2001. Microbiol Mol Biol Rev. 2001. PMID: 11528004 Free PMC article. Review. - Functional characterization of three GlnB homologs in the photosynthetic bacterium Rhodospirillum rubrum: roles in sensing ammonium and energy status.
Zhang Y, Pohlmann EL, Ludden PW, Roberts GP. Zhang Y, et al. J Bacteriol. 2001 Nov;183(21):6159-68. doi: 10.1128/JB.183.21.6159-6168.2001. J Bacteriol. 2001. PMID: 11591658 Free PMC article. - In vitro interactions between the PII proteins and the nitrogenase regulatory enzymes dinitrogenase reductase ADP-ribosyltransferase (DraT) and dinitrogenase reductase-activating glycohydrolase (DraG) in Azospirillum brasilense.
Huergo LF, Merrick M, Monteiro RA, Chubatsu LS, Steffens MB, Pedrosa FO, Souza EM. Huergo LF, et al. J Biol Chem. 2009 Mar 13;284(11):6674-82. doi: 10.1074/jbc.M807378200. Epub 2009 Jan 8. J Biol Chem. 2009. PMID: 19131333 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources