A fronto-parietal circuit for object manipulation in man: evidence from an fMRI-study - PubMed (original) (raw)
Clinical Trial
A fronto-parietal circuit for object manipulation in man: evidence from an fMRI-study
F Binkofski et al. Eur J Neurosci. 1999 Sep.
Free article
Abstract
Functional magnetic resonance imaging (fMRI) was used to localize brain areas active during manipulation of complex objects. In one experiment subjects were required to manipulate complex objects for exploring their macrogeometric features as compared to manipulation of a simple smooth object (a sphere). In a second experiment subjects were asked to manipulate complex objects and to silently name them upon recognition as compared to manipulation of complex not recognizable objects without covert naming. Manipulation of complex objects resulted in an activation of ventral premotor cortex [Brodmann's area (BA) 44], of a region in the intraparietal sulcus (most probably corresponding to the anterior intraparietal area in the monkey), of area SII and of a sector of the superior parietal lobule. When the objects were covertly named additional activations were found in the opercular part of BA 44 and in the pars triangularis of the inferior frontal gyrus (BA 45). We suggest that a fronto-parietal circuit for manipulation of objects exists in humans and involves basically the same areas as in the monkey. It is proposed that area SII analyses the intrinsic object characteristics whilst the superior parietal lobule is related to kinaesthesia.
Similar articles
- A parieto-premotor network for object manipulation: evidence from neuroimaging.
Binkofski F, Buccino G, Stephan KM, Rizzolatti G, Seitz RJ, Freund HJ. Binkofski F, et al. Exp Brain Res. 1999 Sep;128(1-2):210-3. doi: 10.1007/s002210050838. Exp Brain Res. 1999. PMID: 10473761 Clinical Trial. - Decoding Grasping Movements from the Parieto-Frontal Reaching Circuit in the Nonhuman Primate.
Nelissen K, Fiave PA, Vanduffel W. Nelissen K, et al. Cereb Cortex. 2018 Apr 1;28(4):1245-1259. doi: 10.1093/cercor/bhx037. Cereb Cortex. 2018. PMID: 28334082 - Mental representations of action: the neural correlates of the verbal and motor components.
Péran P, Démonet JF, Cherubini A, Carbebat D, Caltagirone C, Sabatini U. Péran P, et al. Brain Res. 2010 Apr 30;1328:89-103. doi: 10.1016/j.brainres.2010.02.082. Epub 2010 Mar 11. Brain Res. 2010. PMID: 20226773 - Development of a superior frontal-intraparietal network for visuo-spatial working memory.
Klingberg T. Klingberg T. Neuropsychologia. 2006;44(11):2171-7. doi: 10.1016/j.neuropsychologia.2005.11.019. Epub 2006 Jan 6. Neuropsychologia. 2006. PMID: 16405923 Review. - Parietal control of hand action.
Sakata H, Taira M. Sakata H, et al. Curr Opin Neurobiol. 1994 Dec;4(6):847-56. doi: 10.1016/0959-4388(94)90133-3. Curr Opin Neurobiol. 1994. PMID: 7888768 Review.
Cited by
- Object-oriented hand dexterity and grasping abilities, from the animal quarters to the neurosurgical OR: a systematic review of the underlying neural correlates in non-human, human primate and recent findings in awake brain surgery.
Tariciotti L, Mattioli L, Viganò L, Gallo M, Gambaretti M, Sciortino T, Gay L, Conti Nibali M, Gallotti A, Cerri G, Bello L, Rossi M. Tariciotti L, et al. Front Integr Neurosci. 2024 Feb 15;18:1324581. doi: 10.3389/fnint.2024.1324581. eCollection 2024. Front Integr Neurosci. 2024. PMID: 38425673 Free PMC article. - Cortico-striatal activity associated with fidget spinner use: an fMRI study.
Narukawa S, Nishimura M, Kuze I, Ohno I, Fukunaga M, Kobayasi KI, Murai SA. Narukawa S, et al. Sci Rep. 2023 Sep 22;13(1):15860. doi: 10.1038/s41598-023-43109-7. Sci Rep. 2023. PMID: 37740116 Free PMC article. - Systems-level decoding reveals the cognitive and behavioral profile of the human intraparietal sulcus.
Boeken OJ, Markett S. Boeken OJ, et al. Front Neuroimaging. 2023 Jan 9;1:1074674. doi: 10.3389/fnimg.2022.1074674. eCollection 2022. Front Neuroimaging. 2023. PMID: 37555176 Free PMC article. - Default mode network failure and neurodegeneration across aging and amnestic and dysexecutive Alzheimer's disease.
Corriveau-Lecavalier N, Gunter JL, Kamykowski M, Dicks E, Botha H, Kremers WK, Graff-Radford J, Wiepert DA, Schwarz CG, Yacoub E, Knopman DS, Boeve BF, Ugurbil K, Petersen RC, Jack CR, Terpstra MJ, Jones DT. Corriveau-Lecavalier N, et al. Brain Commun. 2023 Mar 8;5(2):fcad058. doi: 10.1093/braincomms/fcad058. eCollection 2023. Brain Commun. 2023. PMID: 37013176 Free PMC article. - Deciphering the clinico-radiological heterogeneity of dysexecutive Alzheimer's disease.
Corriveau-Lecavalier N, Barnard LR, Lee J, Dicks E, Botha H, Graff-Radford J, Machulda MM, Boeve BF, Knopman DS, Lowe VJ, Petersen RC, Jack CR Jr, Jones DT. Corriveau-Lecavalier N, et al. Cereb Cortex. 2023 May 24;33(11):7026-7043. doi: 10.1093/cercor/bhad017. Cereb Cortex. 2023. PMID: 36721911 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Miscellaneous