Expression, purification, and characterization of Mycobacterium tuberculosis mycothione reductase - PubMed (original) (raw)
. 1999 Sep 7;38(36):11827-33.
doi: 10.1021/bi991025h.
Affiliations
- PMID: 10512639
- DOI: 10.1021/bi991025h
Expression, purification, and characterization of Mycobacterium tuberculosis mycothione reductase
M P Patel et al. Biochemistry. 1999.
Abstract
Mycothione reductase from the human pathogen Mycobacterium tuberculosis has been cloned, expressed in Mycobacterium smegmatis, and purified 145-fold to homogeneity in 43% yield. Amino acid sequence alignment of mycothione reductase with the functionally homologous glutathione and trypanothione reductase indicates conservation of the catalytically important redox-active disulfide, histidine-glutamate ion pair, and regions involved in binding both the FAD cofactor and the substrate NADPH. The homogeneous 50 kDa subunit enzyme exists as a homodimer and is NADPH-dependent and highly specific for the structurally unique low-molecular mass disulfide, mycothione, exhibiting Michaelis constants of 8 and 73 microM for NADPH and mycothione, respectively. HPLC analysis indicated the presence of 1 mol of bound FAD per monomer as the cofactor exhibiting an absorption spectrum with a lambda(max) at 462 nm with an extinction coefficient of 11 300 M(-)(1) cm(-)(1). The reductive titration of the enzyme with NADH indicates the presence of a charge-transfer complex of one of the presumptive catalytic thiolates and FAD absorbing at ca. 530 nm. Reaction with serially truncated mycothione and other disulfides and pyridine nucleotide analogues indicates a strict minimal disulfide substrate requirement for the glucosamine moiety of mycothione. The enzyme exhibits bi-bi ping-pong kinetics with both disulfide and quinone substrates. Transhydrogenase activity is observed using NADH and thio-NADP(+), confirming the kinetic mechanism. We suggest mycothione reductase as the newest member of the class I flavoprotein disulfide reductase family of oxidoreductases.
Similar articles
- Mycobacterium tuberculosis mycothione reductase: pH dependence of the kinetic parameters and kinetic isotope effects.
Patel MP, Blanchard JS. Patel MP, et al. Biochemistry. 2001 May 1;40(17):5119-26. doi: 10.1021/bi0029144. Biochemistry. 2001. PMID: 11318633 - Kinetic, spectroscopic and thermodynamic characterization of the Mycobacterium tuberculosis adrenodoxin reductase homologue FprA.
McLean KJ, Scrutton NS, Munro AW. McLean KJ, et al. Biochem J. 2003 Jun 1;372(Pt 2):317-27. doi: 10.1042/BJ20021692. Biochem J. 2003. PMID: 12614197 Free PMC article. - Characterization of a new member of the flavoprotein disulfide reductase family of enzymes from Mycobacterium tuberculosis.
Argyrou A, Vetting MW, Blanchard JS. Argyrou A, et al. J Biol Chem. 2004 Dec 10;279(50):52694-702. doi: 10.1074/jbc.M410704200. Epub 2004 Sep 29. J Biol Chem. 2004. PMID: 15456792 - Mechanism and structure of thioredoxin reductase from Escherichia coli.
Williams CH Jr. Williams CH Jr. FASEB J. 1995 Oct;9(13):1267-76. doi: 10.1096/fasebj.9.13.7557016. FASEB J. 1995. PMID: 7557016 Review. - Flavoprotein disulfide reductases: advances in chemistry and function.
Argyrou A, Blanchard JS. Argyrou A, et al. Prog Nucleic Acid Res Mol Biol. 2004;78:89-142. doi: 10.1016/S0079-6603(04)78003-4. Prog Nucleic Acid Res Mol Biol. 2004. PMID: 15210329 Review.
Cited by
- NrdH-redoxin of Mycobacterium tuberculosis and Corynebacterium glutamicum dimerizes at high protein concentration and exclusively receives electrons from thioredoxin reductase.
Van Laer K, Dziewulska AM, Fislage M, Wahni K, Hbeddou A, Collet JF, Versées W, Mateos LM, Tamu Dufe V, Messens J. Van Laer K, et al. J Biol Chem. 2013 Mar 15;288(11):7942-7955. doi: 10.1074/jbc.M112.392688. Epub 2013 Jan 28. J Biol Chem. 2013. PMID: 23362277 Free PMC article. - Functional analysis of the Mycobacterium tuberculosis FAD-dependent thymidylate synthase, ThyX, reveals new amino acid residues contributing to an extended ThyX motif.
Ulmer JE, Boum Y, Thouvenel CD, Myllykallio H, Sibley CH. Ulmer JE, et al. J Bacteriol. 2008 Mar;190(6):2056-64. doi: 10.1128/JB.01094-07. Epub 2008 Jan 11. J Bacteriol. 2008. PMID: 18192395 Free PMC article. - Auranofin exerts broad-spectrum bactericidal activities by targeting thiol-redox homeostasis.
Harbut MB, Vilchèze C, Luo X, Hensler ME, Guo H, Yang B, Chatterjee AK, Nizet V, Jacobs WR Jr, Schultz PG, Wang F. Harbut MB, et al. Proc Natl Acad Sci U S A. 2015 Apr 7;112(14):4453-8. doi: 10.1073/pnas.1504022112. Epub 2015 Mar 23. Proc Natl Acad Sci U S A. 2015. PMID: 25831516 Free PMC article. - New targets and inhibitors of mycobacterial sulfur metabolism.
Paritala H, Carroll KS. Paritala H, et al. Infect Disord Drug Targets. 2013 Apr;13(2):85-115. doi: 10.2174/18715265113139990022. Infect Disord Drug Targets. 2013. PMID: 23808874 Free PMC article. Review. - A mycothiol synthase mutant of Mycobacterium tuberculosis has an altered thiol-disulfide content and limited tolerance to stress.
Buchmeier NA, Newton GL, Fahey RC. Buchmeier NA, et al. J Bacteriol. 2006 Sep;188(17):6245-52. doi: 10.1128/JB.00393-06. J Bacteriol. 2006. PMID: 16923891 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases