Light-independent role of CRY1 and CRY2 in the mammalian circadian clock - PubMed (original) (raw)
Light-independent role of CRY1 and CRY2 in the mammalian circadian clock
E A Griffin Jr et al. Science. 1999.
Abstract
Cryptochrome (CRY), a photoreceptor for the circadian clock in Drosophila, binds to the clock component TIM in a light-dependent fashion and blocks its function. In mammals, genetic evidence suggests a role for CRYs within the clock, distinct from hypothetical photoreceptor functions. Mammalian CRY1 and CRY2 are here shown to act as light-independent inhibitors of CLOCK-BMAL1, the activator driving Per1 transcription. CRY1 or CRY2 (or both) showed light-independent interactions with CLOCK and BMAL1, as well as with PER1, PER2, and TIM. Thus, mammalian CRYs act as light-independent components of the circadian clock and probably regulate Per1 transcriptional cycling by contacting both the activator and its feedback inhibitors.
Similar articles
- Interactivating feedback loops within the mammalian clock: BMAL1 is negatively autoregulated and upregulated by CRY1, CRY2, and PER2.
Yu W, Nomura M, Ikeda M. Yu W, et al. Biochem Biophys Res Commun. 2002 Jan 25;290(3):933-41. doi: 10.1006/bbrc.2001.6300. Biochem Biophys Res Commun. 2002. PMID: 11798163 - NPAS2: an analog of clock operative in the mammalian forebrain.
Reick M, Garcia JA, Dudley C, McKnight SL. Reick M, et al. Science. 2001 Jul 20;293(5529):506-9. doi: 10.1126/science.1060699. Epub 2001 Jul 5. Science. 2001. PMID: 11441147 - Temporal expression of seven clock genes in the suprachiasmatic nucleus and the pars tuberalis of the sheep: evidence for an internal coincidence timer.
Lincoln G, Messager S, Andersson H, Hazlerigg D. Lincoln G, et al. Proc Natl Acad Sci U S A. 2002 Oct 15;99(21):13890-5. doi: 10.1073/pnas.212517599. Epub 2002 Oct 8. Proc Natl Acad Sci U S A. 2002. PMID: 12374857 Free PMC article. - Synchronization of the molecular clockwork by light- and food-related cues in mammals.
Challet E, Caldelas I, Graff C, Pévet P. Challet E, et al. Biol Chem. 2003 May;384(5):711-9. doi: 10.1515/BC.2003.079. Biol Chem. 2003. PMID: 12817467 Review. - [Molecular mechanisms of biological clock: from molecular rhythms to physiological rhythms].
Okamura H. Okamura H. No To Shinkei. 2003 Jan;55(1):5-11. No To Shinkei. 2003. PMID: 12649895 Review. Japanese. No abstract available.
Cited by
- The cost of circadian desynchrony: Evidence, insights and open questions.
West AC, Bechtold DA. West AC, et al. Bioessays. 2015 Jul;37(7):777-88. doi: 10.1002/bies.201400173. Epub 2015 May 22. Bioessays. 2015. PMID: 26010005 Free PMC article. Review. - Molecular components of the Mammalian circadian clock.
Buhr ED, Takahashi JS. Buhr ED, et al. Handb Exp Pharmacol. 2013;(217):3-27. doi: 10.1007/978-3-642-25950-0_1. Handb Exp Pharmacol. 2013. PMID: 23604473 Free PMC article. Review. - Major roles of the circadian clock in cancer.
Huang C, Zhang C, Cao Y, Li J, Bi F. Huang C, et al. Cancer Biol Med. 2023 Jan 12;20(1):1-24. doi: 10.20892/j.issn.2095-3941.2022.0474. Cancer Biol Med. 2023. PMID: 36647780 Free PMC article. Review. - Dimerization and nuclear entry of mPER proteins in mammalian cells.
Yagita K, Yamaguchi S, Tamanini F, van Der Horst GT, Hoeijmakers JH, Yasui A, Loros JJ, Dunlap JC, Okamura H. Yagita K, et al. Genes Dev. 2000 Jun 1;14(11):1353-63. Genes Dev. 2000. PMID: 10837028 Free PMC article. - Circadian clock-protein expression in cyanobacteria: rhythms and phase setting.
Xu Y, Mori T, Johnson CH. Xu Y, et al. EMBO J. 2000 Jul 3;19(13):3349-57. doi: 10.1093/emboj/19.13.3349. EMBO J. 2000. PMID: 10880447 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases