RNAs from all categories generate retrosequences that may be exapted as novel genes or regulatory elements - PubMed (original) (raw)

Review

RNAs from all categories generate retrosequences that may be exapted as novel genes or regulatory elements

J Brosius. Gene. 1999.

Abstract

While the significance of middle repetitive elements had been neglected for a long time, there are again tendencies to ascribe most members of a given middle repetitive sequence family a functional role--as if the discussion of SINE (short interspersed repetitive elements) function only can occupy extreme positions. In this article, I argue that differences between the various classes of retrosequences concern mainly their copy numbers. Consequently, the function of SINEs should be viewed as pragmatic such as, for example, mRNA-derived retrosequences, without underestimating the impact of retroposition for generation of novel protein coding genes or parts thereof (exon shuffling by retroposition) and in particular of SINEs (and retroelements) in modulating genes and their expression. Rapid genomic change by accumulating retrosequences may even facilitate speciation [McDonald, J.F., 1995. Transposable elements: possible catalysts of organismic evolution. Trends Ecol. Evol. 10, 123-126.] In addition to providing mobile regulatory elements, small RNA-derived retrosequences including SINEs can, in analogy to mRNA-derived retrosequences, also give rise to novel small RNA genes. Perhaps not representative for all SINE/master gene relationships, we gained significant knowledge by studying the small neuronal non-messenger RNAs, namely BC1 RNA in rodents and BC200 RNA in primates. BC1 is the first identified master gene generating a subclass of ID repetitive elements, and BC200 is the only known Alu element (monomeric) that was exapted as a novel small RNA encoding gene.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources