Three-dimensional structures of the TAFII-containing complexes TFIID and TFTC - PubMed (original) (raw)
Three-dimensional structures of the TAFII-containing complexes TFIID and TFTC
M Brand et al. Science. 1999.
Abstract
TBP (TATA-binding protein)-associated factors (TAF(II)s) are components of large multiprotein complexes such as TFIID, TFTC, STAGA, PCAF/GCN5, and SAGA, which play a key role in the regulation of gene expression by RNA polymerase II. The structures of TFIID and TFTC have been determined at 3.5-nanometer resolution by electron microscopy and digital image analysis of single particles. Human TFIID resembles a macromolecular clamp that contains four globular domains organized around a solvent-accessible groove of a size suitable to bind DNA. TFTC is larger and contains five domains, four of which are similar to TFIID.
Similar articles
- TATA-binding protein-free TAF-containing complex (TFTC) and p300 are both required for efficient transcriptional activation.
Hardy S, Brand M, Mittler G, Yanagisawa J, Kato S, Meisterernst M, Tora L. Hardy S, et al. J Biol Chem. 2002 Sep 6;277(36):32875-82. doi: 10.1074/jbc.M205860200. Epub 2002 Jul 9. J Biol Chem. 2002. PMID: 12107188 - Three-dimensional structure of the human TFIID-IIA-IIB complex.
Andel F 3rd, Ladurner AG, Inouye C, Tjian R, Nogales E. Andel F 3rd, et al. Science. 1999 Dec 10;286(5447):2153-6. doi: 10.1126/science.286.5447.2153. Science. 1999. PMID: 10591646 - Mapping histone fold TAFs within yeast TFIID.
Leurent C, Sanders S, Ruhlmann C, Mallouh V, Weil PA, Kirschner DB, Tora L, Schultz P. Leurent C, et al. EMBO J. 2002 Jul 1;21(13):3424-33. doi: 10.1093/emboj/cdf342. EMBO J. 2002. PMID: 12093743 Free PMC article. - The histone fold is a key structural motif of transcription factor TFIID.
Gangloff YG, Romier C, Thuault S, Werten S, Davidson I. Gangloff YG, et al. Trends Biochem Sci. 2001 Apr;26(4):250-7. doi: 10.1016/s0968-0004(00)01741-2. Trends Biochem Sci. 2001. PMID: 11295558 Review. - αα-Hub domains and intrinsically disordered proteins: A decisive combo.
Bugge K, Staby L, Salladini E, Falbe-Hansen RG, Kragelund BB, Skriver K. Bugge K, et al. J Biol Chem. 2021 Jan-Jun;296:100226. doi: 10.1074/jbc.REV120.012928. Epub 2020 Dec 29. J Biol Chem. 2021. PMID: 33361159 Free PMC article. Review.
Cited by
- Transcription factor IID parks and drives preinitiation complexes at sharp or broad promoters.
Bernardini A, Hollinger C, Willgenss D, Müller F, Devys D, Tora L. Bernardini A, et al. Trends Biochem Sci. 2023 Oct;48(10):839-848. doi: 10.1016/j.tibs.2023.07.009. Epub 2023 Aug 12. Trends Biochem Sci. 2023. PMID: 37574371 Free PMC article. Review. - Hierarchical TAF1-dependent co-translational assembly of the basal transcription factor TFIID.
Bernardini A, Mukherjee P, Scheer E, Kamenova I, Antonova S, Mendoza Sanchez PK, Yayli G, Morlet B, Timmers HTM, Tora L. Bernardini A, et al. Nat Struct Mol Biol. 2023 Aug;30(8):1141-1152. doi: 10.1038/s41594-023-01026-3. Epub 2023 Jun 29. Nat Struct Mol Biol. 2023. PMID: 37386215 Free PMC article. - Hierarchical TAF1-dependent co-translational assembly of the basal transcription factor TFIID.
Bernardini A, Mukherjee P, Scheer E, Kamenova I, Antonova S, Sanchez PKM, Yayli G, Morlet B, Timmers HTM, Tora L. Bernardini A, et al. bioRxiv [Preprint]. 2023 Apr 5:2023.04.05.535704. doi: 10.1101/2023.04.05.535704. bioRxiv. 2023. PMID: 37066372 Free PMC article. Updated. Preprint. - The SAGA chromatin-modifying complex: the sum of its parts is greater than the whole.
Soffers JHM, Workman JL. Soffers JHM, et al. Genes Dev. 2020 Oct 1;34(19-20):1287-1303. doi: 10.1101/gad.341156.120. Genes Dev. 2020. PMID: 33004486 Free PMC article. Review. - The Structures of Eukaryotic Transcription Pre-initiation Complexes and Their Functional Implications.
Greber BJ, Nogales E. Greber BJ, et al. Subcell Biochem. 2019;93:143-192. doi: 10.1007/978-3-030-28151-9_5. Subcell Biochem. 2019. PMID: 31939151 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources