Computational analysis of action potential initiation in mitral cell soma and dendrites based on dual patch recordings - PubMed (original) (raw)
. 1999 Dec;82(6):3006-20.
doi: 10.1152/jn.1999.82.6.3006.
Affiliations
- PMID: 10601436
- DOI: 10.1152/jn.1999.82.6.3006
Free article
Computational analysis of action potential initiation in mitral cell soma and dendrites based on dual patch recordings
G Y Shen et al. J Neurophysiol. 1999 Dec.
Free article
Abstract
In olfactory mitral cells, dual patch recordings show that the site of action potential initiation can shift between soma and distal primary dendrite and that the shift is dependent on the location and strength of electrode current injection. We have analyzed the mechanisms underlying this shift, using a model of the mitral cell that takes advantage of the constraints available from the two recording sites. Starting with homogeneous Hodgkin-Huxley-like Na(+)-K(+) channel distribution in the soma-dendritic region and much higher sodium channel density in the axonal region, the model's channel kinetics and density were adjusted by a fitting algorithm so that the model response was virtually identical to the experimental data. The combination of loading effects and much higher sodium channel density in the axon relative to the soma-dendritic region results in significantly lower "voltage threshold" for action potential initiation in the axon; the axon therefore fires first unless the voltage gradient in the primary dendrite is steep enough for it to reach its higher threshold. The results thus provide a quantitative explanation for the stimulus strength and position dependence of the site of action potential initiation in the mitral cell.
Similar articles
- Multiple modes of action potential initiation and propagation in mitral cell primary dendrite.
Chen WR, Shen GY, Shepherd GM, Hines ML, Midtgaard J. Chen WR, et al. J Neurophysiol. 2002 Nov;88(5):2755-64. doi: 10.1152/jn.00057.2002. J Neurophysiol. 2002. PMID: 12424310 - Exploring parameter space in detailed single neuron models: simulations of the mitral and granule cells of the olfactory bulb.
Bhalla US, Bower JM. Bhalla US, et al. J Neurophysiol. 1993 Jun;69(6):1948-65. doi: 10.1152/jn.1993.69.6.1948. J Neurophysiol. 1993. PMID: 7688798 - A novel role for MNTB neuron dendrites in regulating action potential amplitude and cell excitability during repetitive firing.
Leão RN, Leão RM, da Costa LF, Rock Levinson S, Walmsley B. Leão RN, et al. Eur J Neurosci. 2008 Jun;27(12):3095-108. doi: 10.1111/j.1460-9568.2008.06297.x. Eur J Neurosci. 2008. PMID: 18598256 - Spatial distribution of NA+ and K+ channels in spinal dorsal horn neurones: role of the soma, axon and dendrites in spike generation.
Safronov BV. Safronov BV. Prog Neurobiol. 1999 Oct;59(3):217-41. doi: 10.1016/s0301-0082(98)00051-3. Prog Neurobiol. 1999. PMID: 10465379 Review. - Enhanced transmission of glutamate current flowing from the dendrite to the soma in rat neocortical layer 5 neurons.
Crill WE, Schwindt PC, Oakley JC. Crill WE, et al. Novartis Found Symp. 2002;241:61-8; discussion 68-71, 226-32. Novartis Found Symp. 2002. PMID: 11771651 Review.
Cited by
- The periglomerular cell of the olfactory bulb and its role in controlling mitral cell spiking: a computational model.
Arruda D, Publio R, Roque AC. Arruda D, et al. PLoS One. 2013;8(2):e56148. doi: 10.1371/journal.pone.0056148. Epub 2013 Feb 6. PLoS One. 2013. PMID: 23405261 Free PMC article. - Fitting experimental data to models that use morphological data from public databases.
Holmes WR, Ambros-Ingerson J, Grover LM. Holmes WR, et al. J Comput Neurosci. 2006 Jun;20(3):349-65. doi: 10.1007/s10827-006-7189-8. Epub 2006 Apr 22. J Comput Neurosci. 2006. PMID: 16683211 - Axonal Na+ channels ensure fast spike activation and back-propagation in cerebellar granule cells.
Diwakar S, Magistretti J, Goldfarb M, Naldi G, D'Angelo E. Diwakar S, et al. J Neurophysiol. 2009 Feb;101(2):519-32. doi: 10.1152/jn.90382.2008. Epub 2008 Dec 10. J Neurophysiol. 2009. PMID: 19073816 Free PMC article. - Phase response curve analysis of a full morphological globus pallidus neuron model reveals distinct perisomatic and dendritic modes of synaptic integration.
Schultheiss NW, Edgerton JR, Jaeger D. Schultheiss NW, et al. J Neurosci. 2010 Feb 17;30(7):2767-82. doi: 10.1523/JNEUROSCI.3959-09.2010. J Neurosci. 2010. PMID: 20164360 Free PMC article. - ModelDB: making models publicly accessible to support computational neuroscience.
Migliore M, Morse TM, Davison AP, Marenco L, Shepherd GM, Hines ML. Migliore M, et al. Neuroinformatics. 2003;1(1):135-9. doi: 10.1385/NI:1:1:135. Neuroinformatics. 2003. PMID: 15055399 Free PMC article. No abstract available.