Kinetics and mechanics of cell adhesion - PubMed (original) (raw)
Review
Kinetics and mechanics of cell adhesion
C Zhu. J Biomech. 2000 Jan.
Abstract
Cell adhesion is mediated by specific interaction between receptors and ligands. Such interaction provides not only physical linkage but also communication between the cell and its environment. The kinetics and mechanics of cell adhesion are coupled, because force can influence the formation and dissociation of receptor-ligand bonds. The kinetic rates and their force dependence determine how likely, how rapidly and how strongly cells bind as well as how long they remain bound. Since adhesion molecules are linked to apposing cellular membranes, their interaction is governed by two-dimensional (2D) kinetics. This is in contrast to the three-dimensional (3D) binding of soluble ligands to cell surface receptors. Unlike the 3D case in which many methods are available for measuring kinetic rates, not until recently have the 2D kinetic rates become experimentally measurable. In this review, I will discuss the recent progress in the experimental methods that enable quantification of the relevant kinetic and mechanical parameters, the fundamental concepts that underlie the physics of the biological phenomena, and the mathematical models that relate functions to the intrinsic properties of the adhesion molecules.
Similar articles
- Determining force dependence of two-dimensional receptor-ligand binding affinity by centrifugation.
Piper JW, Swerlick RA, Zhu C. Piper JW, et al. Biophys J. 1998 Jan;74(1):492-513. doi: 10.1016/S0006-3495(98)77807-5. Biophys J. 1998. PMID: 9449350 Free PMC article. - Kinetics of receptor-ligand interactions in immune responses.
Long M, Lü S, Sun G. Long M, et al. Cell Mol Immunol. 2006 Apr;3(2):79-86. Cell Mol Immunol. 2006. PMID: 16696894 Review. - Modeling concurrent binding of multiple molecular species in cell adhesion.
Zhu C, Williams TE. Zhu C, et al. Biophys J. 2000 Oct;79(4):1850-7. doi: 10.1016/S0006-3495(00)76434-4. Biophys J. 2000. PMID: 11023890 Free PMC article. - Binding constant of cell adhesion receptors and substrate-immobilized ligands depends on the distribution of ligands.
Li L, Hu J, Xu G, Song F. Li L, et al. Phys Rev E. 2018 Jan;97(1-1):012405. doi: 10.1103/PhysRevE.97.012405. Phys Rev E. 2018. PMID: 29448355 - Binding equilibrium and kinetics of membrane-anchored receptors and ligands in cell adhesion: Insights from computational model systems and theory.
Weikl TR, Hu J, Xu GK, Lipowsky R. Weikl TR, et al. Cell Adh Migr. 2016 Sep 2;10(5):576-589. doi: 10.1080/19336918.2016.1180487. Epub 2016 Jun 13. Cell Adh Migr. 2016. PMID: 27294442 Free PMC article. Review.
Cited by
- Tyrosine replacement of PSGL-1 reduces association kinetics with P- and L-selectin on the cell membrane.
Xiao B, Tong C, Jia X, Guo R, Lü S, Zhang Y, McEver RP, Zhu C, Long M. Xiao B, et al. Biophys J. 2012 Aug 22;103(4):777-85. doi: 10.1016/j.bpj.2012.07.028. Biophys J. 2012. PMID: 22947939 Free PMC article. - Temperature dependence of unbinding forces between complementary DNA strands.
Schumakovitch I, Grange W, Strunz T, Bertoncini P, Güntherodt HJ, Hegner M. Schumakovitch I, et al. Biophys J. 2002 Jan;82(1 Pt 1):517-21. doi: 10.1016/S0006-3495(02)75416-7. Biophys J. 2002. PMID: 11751338 Free PMC article. - Surface deformation and shear flow in ligand mediated cell adhesion.
Sircar S, Roberts AJ. Sircar S, et al. J Math Biol. 2016 Oct;73(4):1035-52. doi: 10.1007/s00285-016-0983-7. Epub 2016 Mar 10. J Math Biol. 2016. PMID: 26965247 - Ontogeny of collective behaviour.
Muratore IB, Garnier S. Muratore IB, et al. Philos Trans R Soc Lond B Biol Sci. 2023 Apr 10;378(1874):20220065. doi: 10.1098/rstb.2022.0065. Epub 2023 Feb 20. Philos Trans R Soc Lond B Biol Sci. 2023. PMID: 36802780 Free PMC article. Review. - Probabilistic modeling of rosette formation.
Long M, Chen J, Jiang N, Selvaraj P, McEver RP, Zhu C. Long M, et al. Biophys J. 2006 Jul 1;91(1):352-63. doi: 10.1529/biophysj.106.082909. Epub 2006 Apr 7. Biophys J. 2006. PMID: 16603493 Free PMC article.