Detailed localization of aquaporin-4 messenger RNA in the CNS: preferential expression in periventricular organs - PubMed (original) (raw)

Detailed localization of aquaporin-4 messenger RNA in the CNS: preferential expression in periventricular organs

J L Venero et al. Neuroscience. 1999.

Abstract

We have performed a detailed in situ hybridization study of the distribution of aquaporin-4 messenger RNA in the CNS. Contrary to expectation, we demonstrate that aquaporin-4 is ubiquitously expressed in the CNS. Strong hybridization labeling was detected in multiple olfactory areas, cortical cells, medial habenular nucleus, bed nucleus of the stria terminalis, tenia tecta, pial surface, pontine nucleus, hippocampal formation and multiple thalamic and hypothalamic areas. A low but significant hybridization signal was found, among others, in the choroid plexus of the lateral ventricles, ependymal cells, dorsal raphe and cerebellum. Overall, a preferential distribution of aquaporin-4 messenger RNA-expressing cells was evident in numerous periventricular organs. From the distribution study, the presence of aquaporin-4 messenger RNA-expressing cells in neuronal layers was evident in neuronal layers including the CA1 -CA3 hippocampal pyramidal cells, granular dentate cells and cortical cells. Further evidence of neuronal expression comes from the semicircular arrangement of aquaporin-4 messenger RNA-expressing cells in the bed nucleus of the stria terminalis and medial habenular nucleus exhibiting Nissl-stained morphological features typical of neurons. Combined glial fibrillary acidic protein immunohistochemistry and aquaporin-4 messenger RNA in situ hybridization demonstrated that aquaporin-4 messenger RNA is expressed by glial fibrillary acidic protein-lacking cells. We conclude that aquaporin-4 messenger RNA is present in a collection of structures typically involved in the regulation of water and sodium intake and that aquaporin-4 water channels could be the osmosensor mechanism responsible for detecting changes in cell volume by these cells.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources