Folding of oligoglutamines: a theoretical approach based upon thermodynamics and molecular mechanics - PubMed (original) (raw)

Folding of oligoglutamines: a theoretical approach based upon thermodynamics and molecular mechanics

E B Starikov et al. J Biomol Struct Dyn. 1999 Dec.

Abstract

Folding of oligoglutamine chains of different lengths is of crucial interest for exploring the molecular mechanisms of Huntington's disease. A simple oligoglutamine model based upon the Flory-Huggins theory of polymer solutions demonstrates a random coil instability in chains containing more than 40 glutamine residues with respect to beta-sheet formation. This is in striking quantitative agreement with biochemical results on the chain length dependence of polyglutamine aggregation in vivo and in vitro, as well as with clinical data on the polyglutamine chain length dependence of the onset of Huntington's disease. Furthermore, a detailed molecular-mechanical investigation of a polypeptide chain carrying 40 glutamine residues was performed. Two possible folding modes of such an oligoglutamine chain were revealed: a) a beta-hairpin and b) a highly compact random coil entity stabilized by a wealth of H-bonds among the glutamine side chains. A possible role of these folding modes in polyglutamine aggregation, as well as in the onset of Huntington's disease, is discussed.

PubMed Disclaimer

Publication types

MeSH terms

Substances