Two common mutations (D9N, N291S) in lipoprotein lipase: a cumulative analysis of their influence on plasma lipids and lipoproteins in men and women - PubMed (original) (raw)
Two common mutations (D9N, N291S) in lipoprotein lipase: a cumulative analysis of their influence on plasma lipids and lipoproteins in men and women
J J Kastelein et al. Clin Genet. 1999 Oct.
Abstract
We assessed the effect of two common mutations in the lipoprotein lipase gene (LPL), D9N and N291S, which have been shown to modulate plasma lipids in a wide spectrum of patients. A total of 1114 men and 1 144 women from the Framingham Offspring Study (FOS) were analyzed for these two LPL variants. Subsequently, the association with fasting plasma lipids and risk of coronary artery disease (CHD) was determined. We extended our study by calculating weighed means of lipids and lipoproteins in carriers and non-carriers for these LPL mutations in patients with genetic dyslipidemias, CHD patients and healthy controls. In the FOS sample, the D9N and N291S alleles were associated with lower high-density lipoprotein-cholesterol (HDL-C) (delta = - 0.07 mmol/ 1, p = 0.03) and a trend towards increased triglycerides (delta = 0.25 mmol/ 1, p = 0.07). In women, a trend towards the high triglyceride, low HDL-C phenotype was evident (delta = - 0.02 mmol/1 for HDL-C and delta = 0.14 mmol/l for triglycerides, respectively). Cumulative analysis of other studies of male carriers of the D9N and N291S revealed higher levels of triglycerides (D291N; 2.60(1.85) mmol/l vs. 1.62(1.18) mmol/l: p < 0.0001) (D9N; 1.94 (1.19) mmol/l vs. 1.74(1.17) mmol/l: p < 0.001) and lower HDL-C (N291S; 1.04(0.32) mmol/l vs. 1.15(0.28) mmol/l: p < 0.0001) (D9N; 1.08(0.24) mmol/l vs. 1.16(0.28) mmol/l: p < 0.0001). In females, results differed with higher TG levels (N291S; 1.70(0.99) mmol/l vs. 1.10(0.63) mmol/l: p < 0.001) (D9N; 1.08(0.76) mmol/l vs. 0.96(0.51) mmol/l: p < 0.01) and lower HDL-C levels (N291S; 1.27(0.33) mmol/l vs. 1.51(0.32) mmol/l: p < 0.0001); however, the HDL-C levels for D9N carriers were similar to non-carriers (D9N; 1.52(0.29) mmol/l vs. 1.53(0.35) mmol/l: p = 0.83). Our data provide evidence that common variants of the LPL gene are significant modulators of lipid and lipoprotein levels in both men and women.
Similar articles
- Lipoprotein lipase gene mutations D9N and N291S in four pedigrees with familial combined hyperlipidaemia.
de Bruin TW, Mailly F, van Barlingen HH, Fisher R, Castro Cabezas M, Talmud P, Dallinga-Thie GM, Humphries SE. de Bruin TW, et al. Eur J Clin Invest. 1996 Aug;26(8):631-9. doi: 10.1111/j.1365-2362.1996.tb02146.x. Eur J Clin Invest. 1996. PMID: 8872057 - Lipoprotein lipase D9N, N291S and S447X polymorphisms: their influence on premature coronary heart disease and plasma lipids.
van Bockxmeer FM, Liu Q, Mamotte C, Burke V, Taylor R. van Bockxmeer FM, et al. Atherosclerosis. 2001 Jul;157(1):123-9. doi: 10.1016/s0021-9150(00)00717-6. Atherosclerosis. 2001. PMID: 11427211 - Polymorphisms in the gene encoding lipoprotein lipase in men with low HDL-C and coronary heart disease: the Veterans Affairs HDL Intervention Trial.
Brousseau ME, Goldkamp AL, Collins D, Demissie S, Connolly AC, Cupples LA, Ordovas JM, Bloomfield HE, Robins SJ, Schaefer EJ. Brousseau ME, et al. J Lipid Res. 2004 Oct;45(10):1885-91. doi: 10.1194/jlr.M400152-JLR200. Epub 2004 Aug 1. J Lipid Res. 2004. PMID: 15292370 Clinical Trial. - Seven lipoprotein lipase gene polymorphisms, lipid fractions, and coronary disease: a HuGE association review and meta-analysis.
Sagoo GS, Tatt I, Salanti G, Butterworth AS, Sarwar N, van Maarle M, Jukema JW, Wiman B, Kastelein JJ, Bennet AM, de Faire U, Danesh J, Higgins JP. Sagoo GS, et al. Am J Epidemiol. 2008 Dec 1;168(11):1233-46. doi: 10.1093/aje/kwn235. Epub 2008 Oct 15. Am J Epidemiol. 2008. PMID: 18922999 Review. - Common variation in the lipoprotein lipase gene: effects on plasma lipids and risk of atherosclerosis.
Fisher RM, Humphries SE, Talmud PJ. Fisher RM, et al. Atherosclerosis. 1997 Dec;135(2):145-59. doi: 10.1016/s0021-9150(97)00199-8. Atherosclerosis. 1997. PMID: 9430364 Review.
Cited by
- Association of Metabolic Syndrome with Aerobic Exercise and LPL rs3779788 Polymorphism in Taiwan Biobank Individuals.
Hsu CS, Chang ST, Nfor ON, Lee KJ, Ho CC, Liu CC, Lee SS, Liaw YP. Hsu CS, et al. Diabetes Metab Syndr Obes. 2021 Sep 14;14:3997-4004. doi: 10.2147/DMSO.S328308. eCollection 2021. Diabetes Metab Syndr Obes. 2021. PMID: 34548800 Free PMC article. - Plasma apolipoprotein C-III levels, triglycerides, and coronary artery calcification in type 2 diabetics.
Qamar A, Khetarpal SA, Khera AV, Qasim A, Rader DJ, Reilly MP. Qamar A, et al. Arterioscler Thromb Vasc Biol. 2015 Aug;35(8):1880-8. doi: 10.1161/ATVBAHA.115.305415. Epub 2015 Jun 11. Arterioscler Thromb Vasc Biol. 2015. PMID: 26069232 Free PMC article. - Equivalent binding of wild-type lipoprotein lipase (LPL) and S447X-LPL to GPIHBP1, the endothelial cell LPL transporter.
Turlo K, Leung CS, Seo JJ, Goulbourne CN, Adeyo O, Gin P, Voss C, Bensadoun A, Fong LG, Young SG, Beigneux AP. Turlo K, et al. Biochim Biophys Acta. 2014 Jul;1841(7):963-9. doi: 10.1016/j.bbalip.2014.03.011. Epub 2014 Apr 2. Biochim Biophys Acta. 2014. PMID: 24704550 Free PMC article. - Association of polymorphisms in genes involved in lipoprotein metabolism with plasma concentrations of remnant lipoproteins and HDL subpopulations before and after hormone therapy in postmenopausal women.
Lamon-Fava S, Asztalos BF, Howard TD, Reboussin DM, Horvath KV, Schaefer EJ, Herrington DM. Lamon-Fava S, et al. Clin Endocrinol (Oxf). 2010 Feb;72(2):169-75. doi: 10.1111/j.1365-2265.2009.03644.x. Epub 2009 May 29. Clin Endocrinol (Oxf). 2010. PMID: 19489872 Free PMC article. Clinical Trial.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous