Testing non-linearity and directedness of interactions between neural groups in the macaque inferotemporal cortex - PubMed (original) (raw)
Testing non-linearity and directedness of interactions between neural groups in the macaque inferotemporal cortex
W A Freiwald et al. J Neurosci Methods. 1999.
Abstract
Information processing in the visual cortex depends on complex and context sensitive patterns of interactions between neuronal groups in many different cortical areas. Methods used to date for disentangling this functional connectivity presuppose either linearity or instantaneous interactions, assumptions that are not necessarily valid. In this paper a general framework that encompasses both linear and non-linear modelling of neurophysiological time series data by means of Local Linear Non-linear Autoregressive models (LLNAR) is described. Within this framework a new test for non-linearity of time series and for non-linearity of directedness of neural interactions based on LLNAR is presented. These tests assess the relative goodness of fit of linear versus non-linear models via the bootstrap technique. Additionally, a generalised definition of Granger causality is presented based on LLNAR that is valid for both linear and non-linear systems. Finally, the use of LLNAR for measuring non-linearity and directional influences is illustrated using artificial data, reference data as well as local field potentials (LFPs) from macaque area TE. LFP data is well described by the linear variant of LLNAR. Models of this sort, including lagged values of the preceding 25 to 60 ms, revealed the existence of both uni- and bi-directional influences between recording sites.
Similar articles
- Divisive Normalization Predicts Adaptation-Induced Response Changes in Macaque Inferior Temporal Cortex.
Kaliukhovich DA, Vogels R. Kaliukhovich DA, et al. J Neurosci. 2016 Jun 1;36(22):6116-28. doi: 10.1523/JNEUROSCI.2011-15.2016. J Neurosci. 2016. PMID: 27251630 Free PMC article. - State-dependent effects of stimulus presentation duration on the temporal dynamics of neural responses in the inferotemporal cortex of macaque monkeys.
Mirpour K, Esteky H. Mirpour K, et al. J Neurophysiol. 2009 Sep;102(3):1790-800. doi: 10.1152/jn.91197.2008. Epub 2009 Jul 1. J Neurophysiol. 2009. PMID: 19571189 - Underlying principles of visual shape selectivity in posterior inferotemporal cortex.
Brincat SL, Connor CE. Brincat SL, et al. Nat Neurosci. 2004 Aug;7(8):880-6. doi: 10.1038/nn1278. Epub 2004 Jul 4. Nat Neurosci. 2004. PMID: 15235606 - Responses to continuously changing optic flow in area MST.
Paolini M, Distler C, Bremmer F, Lappe M, Hoffmann KP. Paolini M, et al. J Neurophysiol. 2000 Aug;84(2):730-43. doi: 10.1152/jn.2000.84.2.730. J Neurophysiol. 2000. PMID: 10938300 - Partial Granger causality--eliminating exogenous inputs and latent variables.
Guo S, Seth AK, Kendrick KM, Zhou C, Feng J. Guo S, et al. J Neurosci Methods. 2008 Jul 15;172(1):79-93. doi: 10.1016/j.jneumeth.2008.04.011. Epub 2008 Apr 20. J Neurosci Methods. 2008. PMID: 18508128
Cited by
- Directed Connectivity Analysis of the Brain Network in Mathematically Gifted Adolescents.
Wei M, Wang Q, Jiang X, Guo Y, Fan H, Wang H, Lu X. Wei M, et al. Comput Intell Neurosci. 2020 Aug 28;2020:4209321. doi: 10.1155/2020/4209321. eCollection 2020. Comput Intell Neurosci. 2020. PMID: 32908474 Free PMC article. - Quantifying auditory event-related responses in multichannel human intracranial recordings.
Boatman-Reich D, Franaszczuk PJ, Korzeniewska A, Caffo B, Ritzl EK, Colwell S, Crone NE. Boatman-Reich D, et al. Front Comput Neurosci. 2010 Mar 19;4:4. doi: 10.3389/fncom.2010.00004. eCollection 2010. Front Comput Neurosci. 2010. PMID: 20428513 Free PMC article. - A Time-Varying Connectivity Analysis from Distributed EEG Sources: A Simulation Study.
Ghumare EG, Schrooten M, Vandenberghe R, Dupont P. Ghumare EG, et al. Brain Topogr. 2018 Sep;31(5):721-737. doi: 10.1007/s10548-018-0621-3. Epub 2018 Jan 27. Brain Topogr. 2018. PMID: 29374816 Free PMC article. - Electrophysiological Brain Connectivity: Theory and Implementation.
He B, Astolfi L, Valdes-Sosa PA, Marinazzo D, Palva S, Benar CG, Michel CM, Koenig T. He B, et al. IEEE Trans Biomed Eng. 2019 May 7:10.1109/TBME.2019.2913928. doi: 10.1109/TBME.2019.2913928. Online ahead of print. IEEE Trans Biomed Eng. 2019. PMID: 31071012 Free PMC article. - Cross validation for selection of cortical interaction models from scalp EEG or MEG.
Cheung BL, Nowak R, Lee HC, van Drongelen W, Van Veen BD. Cheung BL, et al. IEEE Trans Biomed Eng. 2012 Feb;59(2):504-14. doi: 10.1109/TBME.2011.2174991. Epub 2011 Nov 8. IEEE Trans Biomed Eng. 2012. PMID: 22084038 Free PMC article.