Thioredoxin-dependent hydroperoxide peroxidase activity of bacterioferritin comigratory protein (BCP) as a new member of the thiol-specific antioxidant protein (TSA)/Alkyl hydroperoxide peroxidase C (AhpC) family - PubMed (original) (raw)

. 2000 Jan 28;275(4):2924-30.

doi: 10.1074/jbc.275.4.2924.

Affiliations

Free article

Thioredoxin-dependent hydroperoxide peroxidase activity of bacterioferritin comigratory protein (BCP) as a new member of the thiol-specific antioxidant protein (TSA)/Alkyl hydroperoxide peroxidase C (AhpC) family

W Jeong et al. J Biol Chem. 2000.

Free article

Abstract

Escherichia coli bacterioferritin comigratory protein (BCP), a putative bacterial member of the TSA/AhpC family, was characterized as a thiol peroxidase. BCP showed a thioredoxin-dependent thiol peroxidase activity. BCP preferentially reduced linoleic acid hydroperoxide rather than H(2)O(2) and t-butyl hydroperoxide with the use of thioredoxin as an in vivo immediate electron donor. The value of V(max)/K(m) of BCP for linoleic acid hydroperoxide was calculated to be 5-fold higher than that for H(2)O(2), implying that BCP has a selective capability to reduce linoleic acid hydroperoxide. Replacement of Cys-45 with serine resulted in the complete loss of thiol peroxidase activity, suggesting that BCP is a new bacterial member of TSA/AhpC family having a conserved cysteine as the primary site of catalysis. BCP exists as a monomer, and its functional Cys-45 appeared to exist as cysteine sulfenic acid. The expression level of BCP gradually elevated during exponential growth until mid-log phase growth, beyond which the expression level was decreased. BCP was induced 3-fold by the oxidative stress given by changing the growth conditions from the anaerobic to aerobic culture. Bcp null mutant grew more slowly than its wild type in aerobic culture and showed the hypersensitivity toward various oxidants such as H(2)O(2), t-butyl hydroperoxide, and linoleic acid hydroperoxide. The peroxide hypersensitivity of the null mutant could be complemented by the expression of bcp gene. Taken together, these data suggest that BCP is a new member of thioredoxin-dependent TSA/AhpC family, acting as a general hydroperoxide peroxidase.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources