Three-dimensional direct imaging of structural relaxation near the colloidal glass transition - PubMed (original) (raw)
Three-dimensional direct imaging of structural relaxation near the colloidal glass transition
ER Weeks et al. Science. 2000.
Abstract
Confocal microscopy was used to directly observe three-dimensional dynamics of particles in colloidal supercooled fluids and colloidal glasses. The fastest particles moved cooperatively; connected clusters of these mobile particles could be identified; and the cluster size distribution, structure, and dynamics were investigated. The characteristic cluster size grew markedly in the supercooled fluid as the glass transition was approached, in agreement with computer simulations; at the glass transition, however, there was a sudden drop in their size. The clusters of fast-moving particles were largest near the alpha-relaxation time scale for supercooled colloidal fluids, but were also present, albeit with a markedly different nature, at shorter beta-relaxation time scales, in both supercooled fluid and glass colloidal phases.
Similar articles
- Contribution of slow clusters to the bulk elasticity near the colloidal glass transition.
Conrad JC, Dhillon PP, Weeks ER, Reichman DR, Weitz DA. Conrad JC, et al. Phys Rev Lett. 2006 Dec 31;97(26):265701. doi: 10.1103/PhysRevLett.97.265701. Epub 2006 Dec 27. Phys Rev Lett. 2006. PMID: 17280428 - Glass transitions in quasi-two-dimensional suspensions of colloidal ellipsoids.
Zheng Z, Wang F, Han Y. Zheng Z, et al. Phys Rev Lett. 2011 Aug 5;107(6):065702. doi: 10.1103/PhysRevLett.107.065702. Epub 2011 Aug 1. Phys Rev Lett. 2011. PMID: 21902341 - Structural and short-time vibrational properties of colloidal glasses and supercooled liquids in the vicinity of the re-entrant glass transition.
Ma X, Mishra CK, Habdas P, Yodh AG. Ma X, et al. J Chem Phys. 2021 Aug 21;155(7):074902. doi: 10.1063/5.0059084. J Chem Phys. 2021. PMID: 34418931 - Supercooled dynamics of grain boundary particles in two-dimensional colloidal crystals.
Skinner TO, Aarts DG, Dullens RP. Skinner TO, et al. J Chem Phys. 2011 Sep 28;135(12):124711. doi: 10.1063/1.3640417. J Chem Phys. 2011. PMID: 21974556 - The protein-solvent glass transition.
Doster W. Doster W. Biochim Biophys Acta. 2010 Jan;1804(1):3-14. doi: 10.1016/j.bbapap.2009.06.019. Epub 2009 Jul 3. Biochim Biophys Acta. 2010. PMID: 19577666 Review.
Cited by
- Long-Range Three-Dimensional Tracking of Nanoparticles Using Interferometric Scattering Microscopy.
Kasaian K, Mazaheri M, Sandoghdar V. Kasaian K, et al. ACS Nano. 2024 Nov 5;18(44):30463-30472. doi: 10.1021/acsnano.4c08435. Epub 2024 Oct 21. ACS Nano. 2024. PMID: 39431910 Free PMC article. - Structural origin of relaxation in dense colloidal suspensions.
Sahu R, Sharma M, Schall P, Maitra Bhattacharyya S, Chikkadi V. Sahu R, et al. Proc Natl Acad Sci U S A. 2024 Oct 15;121(42):e2405515121. doi: 10.1073/pnas.2405515121. Epub 2024 Oct 9. Proc Natl Acad Sci U S A. 2024. PMID: 39382997 - Multiple temperatures and melting of a colloidal active crystal.
Massana-Cid H, Maggi C, Gnan N, Frangipane G, Di Leonardo R. Massana-Cid H, et al. Nat Commun. 2024 Aug 3;15(1):6574. doi: 10.1038/s41467-024-50937-2. Nat Commun. 2024. PMID: 39097577 Free PMC article. - Temporal Evolution of Interparticle Potentials of PMMA Colloids in CHB/Decalin.
Rudolf M, Zumbusch A. Rudolf M, et al. Langmuir. 2024 Aug 6;40(31):16085-16092. doi: 10.1021/acs.langmuir.4c00905. Epub 2024 Jul 25. Langmuir. 2024. PMID: 39054667 Free PMC article. - In-layer inhomogeneity of molecular dynamics in quasi-liquid layers of ice.
Yasuda I, Endo K, Arai N, Yasuoka K. Yasuda I, et al. Commun Chem. 2024 May 29;7(1):117. doi: 10.1038/s42004-024-01197-0. Commun Chem. 2024. PMID: 38811834 Free PMC article.
LinkOut - more resources
Full Text Sources
Other Literature Sources