Postsynaptic protein phosphorylation and LTP - PubMed (original) (raw)
Review
Postsynaptic protein phosphorylation and LTP
T R Soderling et al. Trends Neurosci. 2000 Feb.
Abstract
Prolonged changes in synaptic strength, such as those that occur in LTP and LTD, are thought to contribute to learning and memory processes. These complex phenomena occur in diverse brain structures and use multiple, temporally staged and spatially resolved mechanisms, such as changes in neurotransmitter release, modulation of transmitter receptors, alterations in synaptic structure, and regulation of gene expression and protein synthesis. In the CA1 region of the hippocampus, the combined activation of SRC family tyrosine kinases, protein kinase A, protein kinase C and, in particular, Ca2+/calmodulin-dependent protein kinase II results in phosphorylation of glutamate-receptor-gated ion channels and the enhancement of subsequent postsynaptic current. Crosstalk between these complex biochemical pathways can account for most characteristics of early-phase LTP in this region.
Similar articles
- Reversal of synaptic memory by Ca2+/calmodulin-dependent protein kinase II inhibitor.
Sanhueza M, McIntyre CC, Lisman JE. Sanhueza M, et al. J Neurosci. 2007 May 9;27(19):5190-9. doi: 10.1523/JNEUROSCI.5049-06.2007. J Neurosci. 2007. PMID: 17494705 Free PMC article. - The balance between postsynaptic Ca(2+)-dependent protein kinase and phosphatase activities controlling synaptic strength.
Wang JH, Kelly PT. Wang JH, et al. Learn Mem. 1996 Sep-Oct;3(2-3):170-81. doi: 10.1101/lm.3.2-3.170. Learn Mem. 1996. PMID: 10456087 - Age-related deficits in long-term potentiation are insensitive to hydrogen peroxide: coincidence with enhanced autophosphorylation of Ca2+/calmodulin-dependent protein kinase II.
Watson JB, Khorasani H, Persson A, Huang KP, Huang FL, O'Dell TJ. Watson JB, et al. J Neurosci Res. 2002 Nov 1;70(3):298-308. doi: 10.1002/jnr.10427. J Neurosci Res. 2002. PMID: 12391589 - A role of Ca2+/calmodulin-dependent protein kinase II in the induction of long-term potentiation in hippocampal CA1 area.
Miyamoto E, Fukunaga K. Miyamoto E, et al. Neurosci Res. 1996 Jan;24(2):117-22. doi: 10.1016/0168-0102(95)00991-4. Neurosci Res. 1996. PMID: 8929917 Review. - CaM kinase II in long-term potentiation.
Fukunaga K, Muller D, Miyamoto E. Fukunaga K, et al. Neurochem Int. 1996 Apr;28(4):343-58. doi: 10.1016/0197-0186(95)00097-6. Neurochem Int. 1996. PMID: 8740440 Review.
Cited by
- The Calcium/Calmodulin-Dependent Kinases II and IV as Therapeutic Targets in Neurodegenerative and Neuropsychiatric Disorders.
Sałaciak K, Koszałka A, Żmudzka E, Pytka K. Sałaciak K, et al. Int J Mol Sci. 2021 Apr 21;22(9):4307. doi: 10.3390/ijms22094307. Int J Mol Sci. 2021. PMID: 33919163 Free PMC article. Review. - Notch receptor-ligand binding facilitates extracellular vesicle-mediated neuron-to-neuron communication.
Wang YZ, Castillon CCM, Gebis KK, Bartom ET, d'Azzo A, Contractor A, Savas JN. Wang YZ, et al. Cell Rep. 2024 Feb 27;43(2):113680. doi: 10.1016/j.celrep.2024.113680. Epub 2024 Jan 18. Cell Rep. 2024. PMID: 38241148 Free PMC article. - The neurobiology of opiate tolerance, dependence and sensitization: mechanisms of NMDA receptor-dependent synaptic plasticity.
Trujillo KA. Trujillo KA. Neurotox Res. 2002 Jun;4(4):373-91. doi: 10.1080/10298420290023954. Neurotox Res. 2002. PMID: 12829426 - In vitro classical conditioning of the turtle eyeblink reflex: approaching cellular mechanisms of acquisition.
Keifer J. Keifer J. Cerebellum. 2003;2(1):55-61. doi: 10.1080/14734220310015610. Cerebellum. 2003. PMID: 12882235 - X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor.
Sobolevsky AI, Rosconi MP, Gouaux E. Sobolevsky AI, et al. Nature. 2009 Dec 10;462(7274):745-56. doi: 10.1038/nature08624. Nature. 2009. PMID: 19946266 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous