Detection of peptide-lipid interactions in mixed monolayers, using isotherms, atomic force microscopy, and fourier transform infrared analyses - PubMed (original) (raw)
Detection of peptide-lipid interactions in mixed monolayers, using isotherms, atomic force microscopy, and fourier transform infrared analyses
V Vié et al. Biophys J. 2000 Feb.
Abstract
To improve the understanding of the membrane uptake of an amphipathic and positively charged vector peptide, we studied the interactions of this peptide with different phospholipids, the nature of whose polar headgroups and physical states were varied. Three lipids were considered: dipalmitoylphosphatidylcholine (DPPC), dipalmitoylphosphatidylglycerol (DPPG), and dioleoylphosphatidylglycerol (DOPG). The approach was carried out by three complementary methods: compression isotherms of monolayers and atomic force microscopy observations associated with Fourier transform infrared investigations. From analysis of the compression isotherms, it was concluded that the peptide interacts with all lipids and with an expansion of the mean molecular area, implying that both components form nonideal mixtures. The expansion was larger in the case of DOPG than for DPPC and DPPG because of an alpha to beta conformational transition with an increase in the peptide molar fraction. Atomic force microscopy observations showed that the presence of small amounts of peptide led to the appearance of bowl-like particles and that an increase in the peptide amounts generated the formation of filaments. In the case of DOPG, filaments were found at higher peptide molar fractions than already observed for DOPC because of the presence of negatively charged lipid headgroups.
Similar articles
- Study in mono and bilayers of the interaction of hepatitis G virus (GBV-C/HGV) synthetic antigen E2(99-118) with cell membrane phospholipids.
Dastis M, Rojo N, Alsina MA, Haro I, Panda AK, Mestres C. Dastis M, et al. Biophys Chem. 2004 Jun 1;109(3):375-85. doi: 10.1016/j.bpc.2003.12.013. Biophys Chem. 2004. PMID: 15110935 - Structure and properties of phospholipid-peptide monolayers containing monomeric SP-B(1-25) II. Peptide conformation by infrared spectroscopy.
Shanmukh S, Biswas N, Waring AJ, Walther FJ, Wang Z, Chang Y, Notter RH, Dluhy RA. Shanmukh S, et al. Biophys Chem. 2005 Mar 1;113(3):233-44. doi: 10.1016/j.bpc.2004.09.009. Biophys Chem. 2005. PMID: 15620508 - Pulmonary surfactant model systems catch the specific interaction of an amphiphilic peptide with anionic phospholipid.
Nakahara H, Lee S, Shibata O. Nakahara H, et al. Biophys J. 2009 Feb 18;96(4):1415-29. doi: 10.1016/j.bpj.2008.11.022. Biophys J. 2009. PMID: 19217859 Free PMC article. - Lipid-induced organization of a primary amphipathic peptide: a coupled AFM-monolayer study.
Van Mau N, Vié V, Chaloin L, Lesniewska E, Heitz F, Le Grimellec C. Van Mau N, et al. J Membr Biol. 1999 Feb 1;167(3):241-9. doi: 10.1007/s002329900488. J Membr Biol. 1999. PMID: 9929376 - Interactions of primary amphipathic cell penetrating peptides with model membranes: consequences on the mechanisms of intracellular delivery of therapeutics.
Deshayes S, Morris MC, Divita G, Heitz F. Deshayes S, et al. Curr Pharm Des. 2005;11(28):3629-38. doi: 10.2174/138161205774580741. Curr Pharm Des. 2005. PMID: 16305499 Review.
Cited by
- Investigations into the ability of the peptide, HAL18, to interact with bacterial membranes.
Dennison SR, Kim YS, Cha HJ, Phoenix DA. Dennison SR, et al. Eur Biophys J. 2008 Nov;38(1):37-43. doi: 10.1007/s00249-008-0352-6. Epub 2008 Jul 4. Eur Biophys J. 2008. PMID: 18600320 - Biomimetic Models to Investigate Membrane Biophysics Affecting Lipid-Protein Interaction.
Sarkis J, Vié V. Sarkis J, et al. Front Bioeng Biotechnol. 2020 Apr 15;8:270. doi: 10.3389/fbioe.2020.00270. eCollection 2020. Front Bioeng Biotechnol. 2020. PMID: 32373596 Free PMC article. Review. - Viral membrane penetration: lytic activity of a nodaviral fusion peptide.
Hinz A, Galla HJ. Hinz A, et al. Eur Biophys J. 2005 Jun;34(4):285-93. doi: 10.1007/s00249-004-0450-z. Epub 2005 Apr 15. Eur Biophys J. 2005. PMID: 15834560 - Interactions of the human calcitonin fragment 9-32 with phospholipids: a monolayer study.
Wagner K, Van Mau N, Boichot S, Kajava AV, Krauss U, Le Grimellec C, Beck-Sickinger A, Heitz F. Wagner K, et al. Biophys J. 2004 Jul;87(1):386-95. doi: 10.1529/biophysj.103.036921. Biophys J. 2004. PMID: 15240473 Free PMC article. - Bioactivities of simplified adociaquinone B and naphthoquinone derivatives against Cdc25B, MKP-1, and MKP-3 phosphatases.
Cao S, Murphy BT, Foster C, Lazo JS, Kingston DG. Cao S, et al. Bioorg Med Chem. 2009 Mar 15;17(6):2276-81. doi: 10.1016/j.bmc.2008.10.090. Epub 2008 Nov 8. Bioorg Med Chem. 2009. PMID: 19028102 Free PMC article.
References
- J Membr Biol. 1999 Feb 1;167(3):241-9 - PubMed
- Biophys J. 1985 Jan;47(1):105-13 - PubMed
- Biophys J. 1997 Nov;73(5):2527-33 - PubMed
- Biophys J. 1997 Jan;72(1):463-9 - PubMed
- Curr Opin Struct Biol. 1997 Aug;7(4):528-32 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources