Blocker protection in the pore of a voltage-gated K+ channel and its structural implications - PubMed (original) (raw)

. 2000 Jan 20;403(6767):321-5.

doi: 10.1038/35002099.

Affiliations

Blocker protection in the pore of a voltage-gated K+ channel and its structural implications

D del Camino et al. Nature. 2000.

Abstract

The structure of the bacterial potassium channel KcsA has provided a framework for understanding the related voltage-gated potassium channels (Kv channels) that are used for signalling in neurons. Opening and closing of these Kv channels (gating) occurs at the intracellular entrance to the pore, and this is also the site at which many open channel blockers affect Kv channels. To learn more about the sites of blocker binding and about the structure of the open Kv channel, we investigated here the ability of blockers to protect against chemical modification of cysteines introduced at sites in transmembrane segment S6, which contributes to the intracellular entrance. Within the intracellular half of S6 we found an abrupt cessation of protection for both large and small blockers that is inconsistent with the narrow 'inner pore' seen in the KcsA structure. These and other results are most readily explained by supposing that the structure of Kv channels differs from that of the non-voltage-gated bacterial channel by the introduction of a sharp bend in the inner (S6) helices. This bend would occur at a Pro-X-Pro sequence that is highly conserved in Kv channels, near the site of activation gating.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources