Multiple acquisition of methanogenic archaeal symbionts by anaerobic ciliates - PubMed (original) (raw)
Multiple acquisition of methanogenic archaeal symbionts by anaerobic ciliates
A H van Hoek et al. Mol Biol Evol. 2000 Feb.
Abstract
Anaerobic heterotrichous ciliates (Armophoridae and Clevelandellidae) possess hydrogenosomes that generate molecular hydrogen and ATP. This intracellular source of hydrogen provides the basis for a stable endosymbiotic association with methanogenic archaea. We analyzed the SSU rRNA genes of 18 heterotrichous anaerobic ciliates and their methanogenic endosymbionts in order to unravel the evolution of this mutualistic association. Here, we show that the anaerobic heterotrichous ciliates constitute at least three evolutionary lines. One group consists predominantly of gut-dwelling ciliates, and two to three, potentially four, additional clades comprise ciliates that thrive in freshwater sediments. Their methanogenic endosymbionts belong to only two different taxa that are closely related to free-living methanogenic archaea from the particular ecological niches. The close phylogenetic relationships between the endosymbionts and free-living methanogenic archaea argue for multiple acquisitions from environmental sources, notwithstanding the strictly vertical transmission of the endosymbionts. Since phylogenetic analysis of the small-subunit (SSU) rRNA genes of the hydrogenosomes of these ciliates indicates a descent from the mitochondria of aerobic ciliates, it is likely that anaerobic heterotrichous ciliates hosted endosymbiotic methanogens prior to their radiation. Therefore, our data strongly suggest multiple acquisitions and replacements of endosymbiotic methanogenic archaea during their host's adaptation to the various ecological niches.
Similar articles
- Tripartite Symbiosis of an Anaerobic Scuticociliate with Two Hydrogenosome-Associated Endosymbionts, a _Holospora_-Related Alphaproteobacterium and a Methanogenic Archaeon.
Takeshita K, Yamada T, Kawahara Y, Narihiro T, Ito M, Kamagata Y, Shinzato N. Takeshita K, et al. Appl Environ Microbiol. 2019 Nov 27;85(24):e00854-19. doi: 10.1128/AEM.00854-19. Print 2019 Dec 15. Appl Environ Microbiol. 2019. PMID: 31585988 Free PMC article. - Methanogenic symbionts of anaerobic ciliates are host and habitat specific.
Méndez-Sánchez D, Schrecengost A, Rotterová J, Koštířová K, Beinart RA, Čepička I. Méndez-Sánchez D, et al. ISME J. 2024 Jan 8;18(1):wrae164. doi: 10.1093/ismejo/wrae164. ISME J. 2024. PMID: 39163261 Free PMC article. - Divergent marine anaerobic ciliates harbor closely related Methanocorpusculum endosymbionts.
Schrecengost A, Rotterová J, Poláková K, Čepička I, Beinart RA. Schrecengost A, et al. ISME J. 2024 Jan 8;18(1):wrae125. doi: 10.1093/ismejo/wrae125. ISME J. 2024. PMID: 38982749 Free PMC article. - The use of small subunit rRNA sequences to unravel the relationships between anaerobic ciliates and their methanogen endosymbionts.
Embley TM, Finlay BJ. Embley TM, et al. Microbiology (Reading). 1994 Feb;140 ( Pt 2):225-35. doi: 10.1099/13500872-140-2-225. Microbiology (Reading). 1994. PMID: 8180687 Review. No abstract available. - Anaerobic ciliates as a model group for studying symbioses in oxygen-depleted environments.
Rotterová J, Edgcomb VP, Čepička I, Beinart R. Rotterová J, et al. J Eukaryot Microbiol. 2022 Sep;69(5):e12912. doi: 10.1111/jeu.12912. Epub 2022 May 3. J Eukaryot Microbiol. 2022. PMID: 35325496 Review.
Cited by
- Biogeography and Population Divergence of Microeukaryotes Associated with Fluids and Chimneys in the Hydrothermal Vents of the Southwest Indian Ocean.
Zhang Y, Huang N, Jing H. Zhang Y, et al. Microbiol Spectr. 2022 Oct 26;10(5):e0263221. doi: 10.1128/spectrum.02632-21. Epub 2022 Sep 19. Microbiol Spectr. 2022. PMID: 36121256 Free PMC article. - Archaea in metazoan diets: implications for food webs and biogeochemical cycling.
Thurber AR, Levin LA, Orphan VJ, Marlow JJ. Thurber AR, et al. ISME J. 2012 Aug;6(8):1602-12. doi: 10.1038/ismej.2012.16. Epub 2012 Mar 8. ISME J. 2012. PMID: 22402398 Free PMC article. - Origin and evolution of the mitochondrial proteome.
Kurland CG, Andersson SG. Kurland CG, et al. Microbiol Mol Biol Rev. 2000 Dec;64(4):786-820. doi: 10.1128/MMBR.64.4.786-820.2000. Microbiol Mol Biol Rev. 2000. PMID: 11104819 Free PMC article. Review. - Mitochondria, hydrogenosomes and mitosomes: products of evolutionary tinkering!
Hackstein JH, Tjaden J, Huynen M. Hackstein JH, et al. Curr Genet. 2006 Oct;50(4):225-45. doi: 10.1007/s00294-006-0088-8. Epub 2006 Aug 9. Curr Genet. 2006. PMID: 16897087 Review. No abstract available. - The last universal common ancestor: emergence, constitution and genetic legacy of an elusive forerunner.
Glansdorff N, Xu Y, Labedan B. Glansdorff N, et al. Biol Direct. 2008 Jul 9;3:29. doi: 10.1186/1745-6150-3-29. Biol Direct. 2008. PMID: 18613974 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases