Cellulose biosynthesis in Acetobacter xylinum: visualization of the site of synthesis and direct measurement of the in vivo process - PubMed (original) (raw)
Cellulose biosynthesis in Acetobacter xylinum: visualization of the site of synthesis and direct measurement of the in vivo process
R M Brown Jr et al. Proc Natl Acad Sci U S A. 1976 Dec.
Abstract
In vivo synthesis of cellulose by Acetobacter xylinum was monitored by darkfield light microscopy. Cellulose is synthesized in the form of a ribbon projecting from the pole of the bacterial rod. The ribbon elongates at a rate of 2 mum min-1. The ribbon consists of approximately 46 microfibrils which average 1.6 X 5.8 nm in cross section. The observed microfibrillar elongation rate corresponds to 470 amol of glucose/cell per hr assimilated into cellulose. Electron microscopy of the process using negative staining, sectioning, and freeze-etching indicated the presence of approximately 50 individual synthetic sites organized in a row along the longitudinal axis of the bacterial rod and in close association with the outer envelope. The process of cellulose synthesis in Acetobacter is compared with that in eukaryotic plant cells.
Similar articles
- The biosynthesis of cellulose by Acetobacter xylinum and Acetobacter acetigenus.
Colvin JR, Leppard GG. Colvin JR, et al. Can J Microbiol. 1977 Jun;23(6):701-9. doi: 10.1139/m77-105. Can J Microbiol. 1977. PMID: 871970 No abstract available. - The structure of cellulose-producing bacteria, Acetobacter xylinum and Acetobacter acetigenus.
Colvin JR, Sowden LC, Leppard GG. Colvin JR, et al. Can J Microbiol. 1977 Jun;23(6):790-7. doi: 10.1139/m77-116. Can J Microbiol. 1977. PMID: 194664 - More than meets the eye in bacterial cellulose: biosynthesis, bioprocessing, and applications in advanced fiber composites.
Lee KY, Buldum G, Mantalaris A, Bismarck A. Lee KY, et al. Macromol Biosci. 2014 Jan;14(1):10-32. doi: 10.1002/mabi.201300298. Epub 2013 Jul 30. Macromol Biosci. 2014. PMID: 23897676 Review. - Cellulose biosynthesis and function in bacteria.
Ross P, Mayer R, Benziman M. Ross P, et al. Microbiol Rev. 1991 Mar;55(1):35-58. doi: 10.1128/mr.55.1.35-58.1991. Microbiol Rev. 1991. PMID: 2030672 Free PMC article. Review.
Cited by
- How Many Glucan Chains Form Plant Cellulose Microfibrils? A Mini Review.
Cosgrove DJ, Dupree P, Gomez ED, Haigler CH, Kubicki JD, Zimmer J. Cosgrove DJ, et al. Biomacromolecules. 2024 Oct 14;25(10):6357-6366. doi: 10.1021/acs.biomac.4c00995. Epub 2024 Aug 29. Biomacromolecules. 2024. PMID: 39207939 Free PMC article. Review. - Architecture, Function, Regulation, and Evolution of α-Glucans Metabolic Enzymes in Prokaryotes.
Cifuente JO, Colleoni C, Kalscheuer R, Guerin ME. Cifuente JO, et al. Chem Rev. 2024 Apr 24;124(8):4863-4934. doi: 10.1021/acs.chemrev.3c00811. Epub 2024 Apr 12. Chem Rev. 2024. PMID: 38606812 Free PMC article. Review. - Engineering living materials by synthetic biology.
Luo J, Chen J, Huang Y, You L, Dai Z. Luo J, et al. Biophys Rev (Melville). 2023 Feb 1;4(1):011305. doi: 10.1063/5.0115645. eCollection 2023 Mar. Biophys Rev (Melville). 2023. PMID: 38505813 Free PMC article. Review. - Recent Progress in Improving Rate Performance of Cellulose-Derived Carbon Materials for Sodium-Ion Batteries.
Wang F, Zhang T, Zhang T, He T, Ran F. Wang F, et al. Nanomicro Lett. 2024 Mar 11;16(1):148. doi: 10.1007/s40820-024-01351-2. Nanomicro Lett. 2024. PMID: 38466498 Free PMC article. Review. - The plant cell wall-dynamic, strong, and adaptable-is a natural shapeshifter.
Delmer D, Dixon RA, Keegstra K, Mohnen D. Delmer D, et al. Plant Cell. 2024 May 1;36(5):1257-1311. doi: 10.1093/plcell/koad325. Plant Cell. 2024. PMID: 38301734 Free PMC article. Review.
References
- J Cell Biol. 1962 Jan;12:31-46 - PubMed
- Nature. 1960 Jan 9;185:104-5 - PubMed
- Can J Microbiol. 1961 Jun;7:383-7 - PubMed
- Nature. 1959 Apr 18;183(4668):1135-6 - PubMed
- Biochem J. 1954 Oct;58(2):345-52 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous