Problems due to small samples and sparse data in conditional logistic regression analysis - PubMed (original) (raw)
Review
Problems due to small samples and sparse data in conditional logistic regression analysis
S Greenland et al. Am J Epidemiol. 2000.
Abstract
Conditional logistic regression was developed to avoid "sparse-data" biases that can arise in ordinary logistic regression analysis. Nonetheless, it is a large-sample method that can exhibit considerable bias when certain types of matched sets are infrequent or when the model contains too many parameters. Sparse-data bias can cause misleading inferences about confounding, effect modification, dose response, and induction periods, and can interact with other biases. In this paper, the authors describe these problems in the context of matched case-control analysis and provide examples from a study of electrical wiring and childhood leukemia and a study of diet and glioma. The same problems can arise in any likelihood-based analysis, including ordinary logistic regression. The problems can be detected by careful inspection of data and by examining the sensitivity of estimates to category boundaries, variables in the model, and transformations of those variables. One can also apply various bias corrections or turn to methods less sensitive to sparse data than conditional likelihood, such as Bayesian and empirical-Bayes (hierarchical regression) methods.
Comment in
- Re: "Problems due to small samples and sparse data in conditional logistic regression analysis".
Neuenschwander BE, Zwahlen M. Neuenschwander BE, et al. Am J Epidemiol. 2000 Oct 1;152(7):688-9. doi: 10.1093/aje/152.7.688. Am J Epidemiol. 2000. PMID: 11032165 No abstract available.
Similar articles
- Data augmentation priors for Bayesian and semi-Bayes analyses of conditional-logistic and proportional-hazards regression.
Greenland S, Christensen R. Greenland S, et al. Stat Med. 2001 Aug 30;20(16):2421-8. doi: 10.1002/sim.902. Stat Med. 2001. PMID: 11512132 - Bias-reduced and separation-proof conditional logistic regression with small or sparse data sets.
Heinze G, Puhr R. Heinze G, et al. Stat Med. 2010 Mar 30;29(7-8):770-7. doi: 10.1002/sim.3794. Stat Med. 2010. PMID: 20213709 - Bias in Odds Ratios From Logistic Regression Methods With Sparse Data Sets.
Gosho M, Ohigashi T, Nagashima K, Ito Y, Maruo K. Gosho M, et al. J Epidemiol. 2023 Jun 5;33(6):265-275. doi: 10.2188/jea.JE20210089. Epub 2022 Apr 1. J Epidemiol. 2023. PMID: 34565762 Free PMC article. Review.
Cited by
- Using Machine Learning to Evaluate Coal Geochemical Data with Respect to Dynamic Failures.
Hanson DR, Lawson HE. Hanson DR, et al. Minerals (Basel). 2023 Jun 9;13(6):808. doi: 10.3390/min13060808. Minerals (Basel). 2023. PMID: 39010938 Free PMC article. - Evaluation of clinical outcomes and renal vascular pathology among patients with lupus.
Barber C, Herzenberg A, Aghdassi E, Su J, Lou W, Qian G, Yip J, Nasr SH, Thomas D, Scholey JW, Wither J, Urowitz M, Gladman D, Reich H, Fortin PR. Barber C, et al. Clin J Am Soc Nephrol. 2012 May;7(5):757-64. doi: 10.2215/CJN.02870311. Epub 2012 Mar 22. Clin J Am Soc Nephrol. 2012. PMID: 22442181 Free PMC article. - Heterogeneity and Spatial Distribution of Intravertebral Trabecular Bone Mineral Density in the Lumbar Spine Is Associated With Prevalent Vertebral Fracture.
Kaiser J, Allaire B, Fein PM, Lu D, Adams A, Kiel DP, Jarraya M, Guermazi A, Demissie S, Samelson EJ, Bouxsein ML, Morgan EF. Kaiser J, et al. J Bone Miner Res. 2020 Apr;35(4):641-648. doi: 10.1002/jbmr.3946. Epub 2020 Jan 16. J Bone Miner Res. 2020. PMID: 31886907 Free PMC article. - Covariate selection in high-dimensional propensity score analyses of treatment effects in small samples.
Rassen JA, Glynn RJ, Brookhart MA, Schneeweiss S. Rassen JA, et al. Am J Epidemiol. 2011 Jun 15;173(12):1404-13. doi: 10.1093/aje/kwr001. Epub 2011 May 20. Am J Epidemiol. 2011. PMID: 21602301 Free PMC article. - Risk factors influencing fracture characteristics in postoperative periprosthetic femoral fractures around cemented stems in total hip arthroplasty : a multicentre observational cohort study on 584 fractures.
Jain S, Lamb J, Townsend O, Scott CEH, Kendrick B, Middleton R, Jones SA, Board T, West R, Pandit H. Jain S, et al. Bone Jt Open. 2021 Jul;2(7):466-475. doi: 10.1302/2633-1462.27.BJO-2021-0027.R1. Bone Jt Open. 2021. PMID: 34233455 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources