Riding the sulfur cycle--metabolism of sulfonates and sulfate esters in gram-negative bacteria - PubMed (original) (raw)
Review
Riding the sulfur cycle--metabolism of sulfonates and sulfate esters in gram-negative bacteria
M A Kertesz. FEMS Microbiol Rev. 2000 Apr.
Free article
Abstract
Sulfonates and sulfate esters are widespread in nature, and make up over 95% of the sulfur content of most aerobic soils. Many microorganisms can use sulfonates and sulfate esters as a source of sulfur for growth, even when they are unable to metabolize the carbon skeleton of the compounds. In these organisms, expression of sulfatases and sulfonatases is repressed in the presence of sulfate, in a process mediated by the LysR-type regulator protein CysB, and the corresponding genes therefore constitute an extension of the cys regulon. Additional regulator proteins required for sulfonate desulfonation have been identified in Escherichia coli (the Cbl protein) and Pseudomonas putida (the AsfR protein). Desulfonation of aromatic and aliphatic sulfonates as sulfur sources by aerobic bacteria is oxygen-dependent, carried out by the alpha-ketoglutarate-dependent taurine dioxygenase, or by one of several FMNH(2)-dependent monooxygenases. Desulfurization of condensed thiophenes is also FMNH(2)-dependent, both in the rhodococci and in two Gram-negative species. Bacterial utilization of aromatic sulfate esters is catalyzed by arylsulfatases, most of which are related to human lysosomal sulfatases and contain an active-site formylglycine group that is generated post-translationally. Sulfate-regulated alkylsulfatases, by contrast, are less well characterized. Our increasing knowledge of the sulfur-regulated metabolism of organosulfur compounds suggests applications in practical fields such as biodesulfurization, bioremediation, and optimization of crop sulfur nutrition.
Similar articles
- Sulfonate-sulfur metabolism and its regulation in Escherichia coli.
van der Ploeg JR, Eichhorn E, Leisinger T. van der Ploeg JR, et al. Arch Microbiol. 2001 Jul;176(1-2):1-8. doi: 10.1007/s002030100298. Arch Microbiol. 2001. PMID: 11479697 Review. - Bacterial transporters for sulfate and organosulfur compounds.
Kertesz MA. Kertesz MA. Res Microbiol. 2001 Apr-May;152(3-4):279-90. doi: 10.1016/s0923-2508(01)01199-8. Res Microbiol. 2001. PMID: 11421275 Review. - Role of the ssu and seu genes of Corynebacterium glutamicum ATCC 13032 in utilization of sulfonates and sulfonate esters as sulfur sources.
Koch DJ, Rückert C, Rey DA, Mix A, Pühler A, Kalinowski J. Koch DJ, et al. Appl Environ Microbiol. 2005 Oct;71(10):6104-14. doi: 10.1128/AEM.71.10.6104-6114.2005. Appl Environ Microbiol. 2005. PMID: 16204527 Free PMC article. - The sulfur-regulated arylsulfatase gene cluster of Pseudomonas aeruginosa, a new member of the cys regulon.
Hummerjohann J, Laudenbach S, Rétey J, Leisinger T, Kertesz MA. Hummerjohann J, et al. J Bacteriol. 2000 Apr;182(7):2055-8. doi: 10.1128/JB.182.7.2055-2058.2000. J Bacteriol. 2000. PMID: 10715018 Free PMC article. - Characterization of a sulfur-regulated oxygenative alkylsulfatase from Pseudomonas putida S-313.
Kahnert A, Kertesz MA. Kahnert A, et al. J Biol Chem. 2000 Oct 13;275(41):31661-7. doi: 10.1074/jbc.M005820200. J Biol Chem. 2000. PMID: 10913158
Cited by
- Single-Cell Genomics Reveals a Diverse Metabolic Potential of Uncultivated _Desulfatiglans_-Related Deltaproteobacteria Widely Distributed in Marine Sediment.
Jochum LM, Schreiber L, Marshall IPG, Jørgensen BB, Schramm A, Kjeldsen KU. Jochum LM, et al. Front Microbiol. 2018 Sep 3;9:2038. doi: 10.3389/fmicb.2018.02038. eCollection 2018. Front Microbiol. 2018. PMID: 30233524 Free PMC article. - Microbial populations associated with treatment of an industrial dye effluent in an anaerobic baffled reactor.
Plumb JJ, Bell J, Stuckey DC. Plumb JJ, et al. Appl Environ Microbiol. 2001 Jul;67(7):3226-35. doi: 10.1128/AEM.67.7.3226-3235.2001. Appl Environ Microbiol. 2001. PMID: 11425746 Free PMC article. - Uncovering Key Metabolic Determinants of the Drug Interactions Between Trimethoprim and Erythromycin in Escherichia coli.
Qi Q, Angermayr SA, Bollenbach T. Qi Q, et al. Front Microbiol. 2021 Oct 20;12:760017. doi: 10.3389/fmicb.2021.760017. eCollection 2021. Front Microbiol. 2021. PMID: 34745067 Free PMC article. - Radical-mediated C-S bond cleavage in C2 sulfonate degradation by anaerobic bacteria.
Xing M, Wei Y, Zhou Y, Zhang J, Lin L, Hu Y, Hua G, N Nanjaraj Urs A, Liu D, Wang F, Guo C, Tong Y, Li M, Liu Y, Ang EL, Zhao H, Yuchi Z, Zhang Y. Xing M, et al. Nat Commun. 2019 Apr 8;10(1):1609. doi: 10.1038/s41467-019-09618-8. Nat Commun. 2019. PMID: 30962433 Free PMC article. - The alkaline hydrolysis of sulfonate esters: challenges in interpreting experimental and theoretical data.
Duarte F, Geng T, Marloie G, Al Hussain AO, Williams NH, Kamerlin SC. Duarte F, et al. J Org Chem. 2014 Apr 4;79(7):2816-28. doi: 10.1021/jo402420t. Epub 2013 Dec 6. J Org Chem. 2014. PMID: 24279349 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous