Activation of MST/Krs and c-Jun N-terminal kinases by different signaling pathways during cytotrienin A-induced apoptosis - PubMed (original) (raw)

. 2000 Mar 24;275(12):8766-71.

doi: 10.1074/jbc.275.12.8766.

Affiliations

Free article

Activation of MST/Krs and c-Jun N-terminal kinases by different signaling pathways during cytotrienin A-induced apoptosis

M Watabe et al. J Biol Chem. 2000.

Free article

Abstract

We found that antitumor drugs such as cytotrienin A, camptothecin, taxol, and 5-fluorouracil induced the activation of a 36-kDa protein kinase (p36 myelin basic protein (MBP) kinase) during apoptosis in human promyelocytic leukemia HL-60 cells. This p36 MBP kinase, which phosphorylates MBP in an in-gel kinase assay, results from the caspase-3-mediated proteolytic cleavage of MST/Krs protein, a mammalian Ste20-like serine/threonine kinase. Herein the correlation between cytotrienin A-induced apoptosis and the activation of MST/Krs proteins was examined in human tumor cell lines, including leukemia-, lung-, epidermoid-, cervix-, stomach-, and brain-derived cell lines. In cytotrienin A-sensitive cell lines, we observed a strong activation of p36 MBP kinase by cleavage of the C-terminal regulatory domain of full-length MST/Krs proteins by caspase-3. When the kinase-inactive mutant form of MST/Krs protein was overexpressed in cytotrienin A-sensitive HL-60 cells, the cytotrienin A-induced apoptosis was partially inhibited. Because cytotrienin A also activated c-Jun N-terminal kinase, we examined the effect of the expression of dominant negative c-Jun on cytotrienin A-induced apoptosis. The expression of dominant negative c-Jun also partially inhibited cytotrienin A-induced apoptosis. Furthermore, coexpression of kinase-inactive MST/Krs protein and dominant negative c-Jun completely suppressed cytotrienin A-induced apoptosis. These findings suggest that the proteolytic activation of MST/Krs and c-Jun N-terminal kinase activation are involved in cytotrienin A-induced apoptosis in human tumor cell lines.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources