Estimating recombinational parameters in Streptococcus pneumoniae from multilocus sequence typing data - PubMed (original) (raw)
Estimating recombinational parameters in Streptococcus pneumoniae from multilocus sequence typing data
E J Feil et al. Genetics. 2000 Apr.
Abstract
Multilocus sequence typing (MLST) is a highly discriminatory molecular typing method that defines isolates of bacterial pathogens using the sequences of approximately 450-bp internal fragments of seven housekeeping genes. This technique has been applied to 575 isolates of Streptococcus pneumoniae and identifies a number of discrete clonal complexes. These clonal complexes are typically represented by a single group of isolates sharing identical alleles at all seven loci, plus single-locus variants that differ from this group at only one out of the seven loci. As MLST is highly discriminatory, the members of each clonal complex can be assumed to have a recent common ancestor, and the molecular events that give rise to the single-locus variants can be used to estimate the relative contributions of recombination and mutation to clonal divergence. By comparing the sequences of the variant alleles within each clonal complex with the allele typically found within that clonal complex, we estimate that recombination has generated new alleles at a frequency approximately 10-fold higher than mutation, and that a single nucleotide site is approximately 50 times more likely to change through recombination than mutation. We also demonstrate how to estimate the average length of recombinational replacements from MLST data.
Similar articles
- The relative contributions of recombination and mutation to the divergence of clones of Neisseria meningitidis.
Feil EJ, Maiden MC, Achtman M, Spratt BG. Feil EJ, et al. Mol Biol Evol. 1999 Nov;16(11):1496-502. doi: 10.1093/oxfordjournals.molbev.a026061. Mol Biol Evol. 1999. PMID: 10555280 - Estimating the relative contributions of mutation and recombination to clonal diversification: a comparison between Neisseria meningitidis and Streptococcus pneumoniae.
Feil EJ, Enright MC, Spratt BG. Feil EJ, et al. Res Microbiol. 2000 Jul-Aug;151(6):465-9. doi: 10.1016/s0923-2508(00)00168-6. Res Microbiol. 2000. PMID: 10961460 Review. - A multilocus sequence typing scheme for Streptococcus pneumoniae: identification of clones associated with serious invasive disease.
Enright MC, Spratt BG. Enright MC, et al. Microbiology (Reading). 1998 Nov;144 ( Pt 11):3049-3060. doi: 10.1099/00221287-144-11-3049. Microbiology (Reading). 1998. PMID: 9846740 - Multilocus sequence typing of Streptococcus pneumoniae by use of mass spectrometry.
Dunne EM, Ong EK, Moser RJ, Siba PM, Phuanukoonnon S, Greenhill AR, Robins-Browne RM, Mulholland EK, Satzke C. Dunne EM, et al. J Clin Microbiol. 2011 Nov;49(11):3756-60. doi: 10.1128/JCM.05113-11. Epub 2011 Aug 31. J Clin Microbiol. 2011. PMID: 21880964 Free PMC article. - Genotyping Streptococcus pneumoniae.
Rayner RE, Savill J, Hafner LM, Huygens F. Rayner RE, et al. Future Microbiol. 2015;10(4):653-64. doi: 10.2217/fmb.14.153. Future Microbiol. 2015. PMID: 25865199 Review.
Cited by
- Variation in the presence of neuraminidase genes among Streptococcus pneumoniae isolates with identical sequence types.
Pettigrew MM, Fennie KP, York MP, Daniels J, Ghaffar F. Pettigrew MM, et al. Infect Immun. 2006 Jun;74(6):3360-5. doi: 10.1128/IAI.01442-05. Infect Immun. 2006. PMID: 16714565 Free PMC article. - Structure and dynamics of the pan-genome of Streptococcus pneumoniae and closely related species.
Donati C, Hiller NL, Tettelin H, Muzzi A, Croucher NJ, Angiuoli SV, Oggioni M, Dunning Hotopp JC, Hu FZ, Riley DR, Covacci A, Mitchell TJ, Bentley SD, Kilian M, Ehrlich GD, Rappuoli R, Moxon ER, Masignani V. Donati C, et al. Genome Biol. 2010;11(10):R107. doi: 10.1186/gb-2010-11-10-r107. Epub 2010 Oct 29. Genome Biol. 2010. PMID: 21034474 Free PMC article. - Genomic Diversity and Evolution of the Fish Pathogen Flavobacterium psychrophilum.
Duchaud E, Rochat T, Habib C, Barbier P, Loux V, Guérin C, Dalsgaard I, Madsen L, Nilsen H, Sundell K, Wiklund T, Strepparava N, Wahli T, Caburlotto G, Manfrin A, Wiens GD, Fujiwara-Nagata E, Avendaño-Herrera R, Bernardet JF, Nicolas P. Duchaud E, et al. Front Microbiol. 2018 Feb 7;9:138. doi: 10.3389/fmicb.2018.00138. eCollection 2018. Front Microbiol. 2018. PMID: 29467746 Free PMC article. - Competence in Streptococcus pneumoniae is a response to an increasing mutational burden.
Gagne AL, Stevens KE, Cassone M, Pujari A, Abiola OE, Chang DJ, Sebert ME. Gagne AL, et al. PLoS One. 2013 Aug 13;8(8):e72613. doi: 10.1371/journal.pone.0072613. eCollection 2013. PLoS One. 2013. PMID: 23967325 Free PMC article. - Streptococcus pneumoniae clonal complex 199: genetic diversity and tissue-specific virulence.
Thomas JC, Figueira M, Fennie KP, Laufer AS, Kong Y, Pichichero ME, Pelton SI, Pettigrew MM. Thomas JC, et al. PLoS One. 2011 Apr 14;6(4):e18649. doi: 10.1371/journal.pone.0018649. PLoS One. 2011. PMID: 21533186 Free PMC article.
References
- Mol Microbiol. 1991 Sep;5(9):2255-60 - PubMed
- J Bacteriol. 1991 Nov;173(22):7257-68 - PubMed
- Infect Immun. 1993 Jun;61(6):2273-6 - PubMed
- Proc Natl Acad Sci U S A. 1993 May 15;90(10):4384-8 - PubMed
- J Gen Microbiol. 1993 Nov;139(11):2603-11 - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Research Materials