Estimating recombinational parameters in Streptococcus pneumoniae from multilocus sequence typing data - PubMed (original) (raw)
Estimating recombinational parameters in Streptococcus pneumoniae from multilocus sequence typing data
E J Feil et al. Genetics. 2000 Apr.
Abstract
Multilocus sequence typing (MLST) is a highly discriminatory molecular typing method that defines isolates of bacterial pathogens using the sequences of approximately 450-bp internal fragments of seven housekeeping genes. This technique has been applied to 575 isolates of Streptococcus pneumoniae and identifies a number of discrete clonal complexes. These clonal complexes are typically represented by a single group of isolates sharing identical alleles at all seven loci, plus single-locus variants that differ from this group at only one out of the seven loci. As MLST is highly discriminatory, the members of each clonal complex can be assumed to have a recent common ancestor, and the molecular events that give rise to the single-locus variants can be used to estimate the relative contributions of recombination and mutation to clonal divergence. By comparing the sequences of the variant alleles within each clonal complex with the allele typically found within that clonal complex, we estimate that recombination has generated new alleles at a frequency approximately 10-fold higher than mutation, and that a single nucleotide site is approximately 50 times more likely to change through recombination than mutation. We also demonstrate how to estimate the average length of recombinational replacements from MLST data.
Similar articles
- The relative contributions of recombination and mutation to the divergence of clones of Neisseria meningitidis.
Feil EJ, Maiden MC, Achtman M, Spratt BG. Feil EJ, et al. Mol Biol Evol. 1999 Nov;16(11):1496-502. doi: 10.1093/oxfordjournals.molbev.a026061. Mol Biol Evol. 1999. PMID: 10555280 - Estimating the relative contributions of mutation and recombination to clonal diversification: a comparison between Neisseria meningitidis and Streptococcus pneumoniae.
Feil EJ, Enright MC, Spratt BG. Feil EJ, et al. Res Microbiol. 2000 Jul-Aug;151(6):465-9. doi: 10.1016/s0923-2508(00)00168-6. Res Microbiol. 2000. PMID: 10961460 Review. - A multilocus sequence typing scheme for Streptococcus pneumoniae: identification of clones associated with serious invasive disease.
Enright MC, Spratt BG. Enright MC, et al. Microbiology (Reading). 1998 Nov;144 ( Pt 11):3049-3060. doi: 10.1099/00221287-144-11-3049. Microbiology (Reading). 1998. PMID: 9846740 - Multilocus sequence typing of Streptococcus pneumoniae by use of mass spectrometry.
Dunne EM, Ong EK, Moser RJ, Siba PM, Phuanukoonnon S, Greenhill AR, Robins-Browne RM, Mulholland EK, Satzke C. Dunne EM, et al. J Clin Microbiol. 2011 Nov;49(11):3756-60. doi: 10.1128/JCM.05113-11. Epub 2011 Aug 31. J Clin Microbiol. 2011. PMID: 21880964 Free PMC article. - Genotyping Streptococcus pneumoniae.
Rayner RE, Savill J, Hafner LM, Huygens F. Rayner RE, et al. Future Microbiol. 2015;10(4):653-64. doi: 10.2217/fmb.14.153. Future Microbiol. 2015. PMID: 25865199 Review.
Cited by
- The Changes in Epidemiology of Imipenem-Resistant Acinetobacter baumannii Bacteremia in a Pediatric Intensive Care Unit for 17 Years.
Kim D, Lee H, Choi JS, Croney CM, Park KS, Park HJ, Cho J, Son S, Kim JY, Choi SH, Huh HJ, Ko KS, Lee NY, Kim YJ. Kim D, et al. J Korean Med Sci. 2022 Jun 20;37(24):e196. doi: 10.3346/jkms.2022.37.e196. J Korean Med Sci. 2022. PMID: 35726147 Free PMC article. - Interactions of Bacteriophages and Bacteria at the Airway Mucosa: New Insights Into the Pathophysiology of Asthma.
Tzani-Tzanopoulou P, Skliros D, Megremis S, Xepapadaki P, Andreakos E, Chanishvili N, Flemetakis E, Kaltsas G, Taka S, Lebessi E, Doudoulakakis A, Papadopoulos NG. Tzani-Tzanopoulou P, et al. Front Allergy. 2021 Jan 26;1:617240. doi: 10.3389/falgy.2020.617240. eCollection 2020. Front Allergy. 2021. PMID: 35386933 Free PMC article. Review. - Streptococcus pneumoniae serotypes that frequently colonise the human nasopharynx are common recipients of penicillin-binding protein gene fragments from Streptococcus mitis.
Kalizang'oma A, Chaguza C, Gori A, Davison C, Beleza S, Antonio M, Beall B, Goldblatt D, Kwambana-Adams B, Bentley SD, Heyderman RS. Kalizang'oma A, et al. Microb Genom. 2021 Sep;7(9):000622. doi: 10.1099/mgen.0.000622. Microb Genom. 2021. PMID: 34550067 Free PMC article. - Whole genome sequencing of macrolide resistant Streptococcus pneumoniae serotype 19A sequence type 416.
Spanelova P, Jakubu V, Malisova L, Musilek M, Kozakova J, Papagiannitsis CC, Bitar I, Hrabak J, Pantosti A, Del Grosso M, Zemlickova H. Spanelova P, et al. BMC Microbiol. 2020 Jul 25;20(1):224. doi: 10.1186/s12866-020-01909-1. BMC Microbiol. 2020. PMID: 32711478 Free PMC article. - Prophages and satellite prophages are widespread in Streptococcus and may play a role in pneumococcal pathogenesis.
Rezaei Javan R, Ramos-Sevillano E, Akter A, Brown J, Brueggemann AB. Rezaei Javan R, et al. Nat Commun. 2019 Oct 24;10(1):4852. doi: 10.1038/s41467-019-12825-y. Nat Commun. 2019. PMID: 31649284 Free PMC article.
References
- Mol Microbiol. 1991 Sep;5(9):2255-60 - PubMed
- J Bacteriol. 1991 Nov;173(22):7257-68 - PubMed
- Infect Immun. 1993 Jun;61(6):2273-6 - PubMed
- Proc Natl Acad Sci U S A. 1993 May 15;90(10):4384-8 - PubMed
- J Gen Microbiol. 1993 Nov;139(11):2603-11 - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Research Materials