Understanding the overdispersed molecular clock - PubMed (original) (raw)
Understanding the overdispersed molecular clock
D J Cutler. Genetics. 2000 Mar.
Abstract
Rates of molecular evolution at some protein-encoding loci are more irregular than expected under a simple neutral model of molecular evolution. This pattern of excessive irregularity in protein substitutions is often called the "overdispersed molecular clock" and is characterized by an index of dispersion, R(T) > 1. Assuming infinite sites, no recombination model of the gene R(T) is given for a general stationary model of molecular evolution. R(T) is shown to be affected by only three things: fluctuations that occur on a very slow time scale, advantageous or deleterious mutations, and interactions between mutations. In the absence of interactions, advantageous mutations are shown to lower R(T); deleterious mutations are shown to raise it. Previously described models for the overdispersed molecular clock are analyzed in terms of this work as are a few very simple new models. A model of deleterious mutations is shown to be sufficient to explain the observed values of R(T). Our current best estimates of R(T) suggest that either most mutations are deleterious or some key population parameter changes on a very slow time scale. No other interpretations seem plausible. Finally, a comment is made on how R(T) might be used to distinguish selective sweeps from background selection.
Similar articles
- The index of dispersion of molecular evolution: slow fluctuations.
Cutler DJ. Cutler DJ. Theor Popul Biol. 2000 Mar;57(2):177-86. doi: 10.1006/tpbi.1999.1445. Theor Popul Biol. 2000. PMID: 10792981 - Overdispersed molecular evolution in constant environments.
Iwasa Y. Iwasa Y. J Theor Biol. 1993 Oct 7;164(3):373-93. doi: 10.1006/jtbi.1993.1161. J Theor Biol. 1993. PMID: 8246525 - On the overdispersed molecular clock.
Takahata N. Takahata N. Genetics. 1987 May;116(1):169-79. doi: 10.1093/genetics/116.1.169. Genetics. 1987. PMID: 3596230 Free PMC article. - Selective Sweeps.
Stephan W. Stephan W. Genetics. 2019 Jan;211(1):5-13. doi: 10.1534/genetics.118.301319. Genetics. 2019. PMID: 30626638 Free PMC article. Review. - Local effects of limited recombination: historical perspective and consequences for population estimates of adaptive evolution.
Williford A, Comeron JM. Williford A, et al. J Hered. 2010 Mar-Apr;101 Suppl 1:S127-34. doi: 10.1093/jhered/esq012. J Hered. 2010. PMID: 20421321 Review.
Cited by
- Adaptations to fluctuating selection in Drosophila.
Mustonen V, Lässig M. Mustonen V, et al. Proc Natl Acad Sci U S A. 2007 Feb 13;104(7):2277-82. doi: 10.1073/pnas.0607105104. Epub 2007 Feb 7. Proc Natl Acad Sci U S A. 2007. PMID: 17287357 Free PMC article. - Long-term evolution on complex fitness landscapes when mutation is weak.
McCandlish DM. McCandlish DM. Heredity (Edinb). 2018 Nov;121(5):449-465. doi: 10.1038/s41437-018-0142-6. Epub 2018 Sep 19. Heredity (Edinb). 2018. PMID: 30232363 Free PMC article. - The Neutral Theory in Light of Natural Selection.
Kern AD, Hahn MW. Kern AD, et al. Mol Biol Evol. 2018 Jun 1;35(6):1366-1371. doi: 10.1093/molbev/msy092. Mol Biol Evol. 2018. PMID: 29722831 Free PMC article. - Epistasis increases the rate of conditionally neutral substitution in an adapting population.
Draghi JA, Parsons TL, Plotkin JB. Draghi JA, et al. Genetics. 2011 Apr;187(4):1139-52. doi: 10.1534/genetics.110.125997. Epub 2011 Feb 1. Genetics. 2011. PMID: 21288876 Free PMC article. - Molecular clock in neutral protein evolution.
Wilke CO. Wilke CO. BMC Genet. 2004 Aug 27;5:25. doi: 10.1186/1471-2156-5-25. BMC Genet. 2004. PMID: 15333142 Free PMC article.
References
- Proc Natl Acad Sci U S A. 1984 Dec;81(24):8009-13 - PubMed
- Theor Popul Biol. 1975 Apr;7(2):256-76 - PubMed
- Proc Natl Acad Sci U S A. 1979 Jul;76(7):3440-4 - PubMed
- J Mol Evol. 1971;1(1):18-25 - PubMed
- Mol Phylogenet Evol. 1994 Sep;3(3):230-9 - PubMed
MeSH terms
LinkOut - more resources
Full Text Sources
Molecular Biology Databases