Estimating intracellular calcium concentrations and buffering without wavelength ratioing - PubMed (original) (raw)
Estimating intracellular calcium concentrations and buffering without wavelength ratioing
M Maravall et al. Biophys J. 2000 May.
Abstract
We describe a method for determining intracellular free calcium concentration ([Ca(2+)]) from single-wavelength fluorescence signals. In contrast to previous single-wavelength calibration methods, the proposed method does not require independent estimates of resting [Ca(2+)] but relies on the measurement of fluorescence close to indicator saturation during an experiment. Consequently, it is well suited to [Ca(2+)] indicators for which saturation can be achieved under physiological conditions. In addition, the method requires that the indicators have large dynamic ranges. Popular indicators such as Calcium Green-1 or Fluo-3 fulfill these conditions. As a test of the method, we measured [Ca(2+)] in CA1 pyramidal neurons in rat hippocampal slices using Oregon Green BAPTA-1 and 2-photon laser scanning microscopy (BAPTA: 1,2-bis(2-aminophenoxy)ethane-N,N,N', N'-tetraacetic acid). Resting [Ca(2+)] was 32-59 nM in the proximal apical dendrite. Monitoring action potential-evoked [Ca(2+)] transients as a function of indicator loading yielded estimates of endogenous buffering capacity (44-80) and peak [Ca(2+)] changes at zero added buffer (178-312 nM). In young animals (postnatal days 14-17) our results were comparable to previous estimates obtained by ratiometric methods (, Biophys. J. 70:1069-1081), and no significant differences were seen in older animals (P24-28). We expect our method to be widely applicable to measurements of [Ca(2+)] and [Ca(2+)]-dependent processes in small neuronal compartments, particularly in the many situations that do not permit wavelength ratio imaging.
Similar articles
- Estimating intracellular Ca2+ concentrations and buffering in a dendritic inhibitory hippocampal interneuron.
Liao CW, Lien CC. Liao CW, et al. Neuroscience. 2009 Dec 29;164(4):1701-11. doi: 10.1016/j.neuroscience.2009.09.052. Epub 2009 Sep 25. Neuroscience. 2009. PMID: 19782725 - Ca2+ buffering and action potential-evoked Ca2+ signaling in dendrites of pyramidal neurons.
Helmchen F, Imoto K, Sakmann B. Helmchen F, et al. Biophys J. 1996 Feb;70(2):1069-81. doi: 10.1016/S0006-3495(96)79653-4. Biophys J. 1996. PMID: 8789126 Free PMC article. - Analytical calculation of intracellular calcium wave characteristics.
Kupferman R, Mitra PP, Hohenberg PC, Wang SS. Kupferman R, et al. Biophys J. 1997 Jun;72(6):2430-44. doi: 10.1016/S0006-3495(97)78888-X. Biophys J. 1997. PMID: 9168020 Free PMC article. - Physiology of intracellular calcium buffering.
Eisner D, Neher E, Taschenberger H, Smith G. Eisner D, et al. Physiol Rev. 2023 Oct 1;103(4):2767-2845. doi: 10.1152/physrev.00042.2022. Epub 2023 Jun 16. Physiol Rev. 2023. PMID: 37326298 Free PMC article. Review. - Cytoplasmic Calcium Buffering: An Integrative Crosstalk.
Gilabert JA. Gilabert JA. Adv Exp Med Biol. 2020;1131:163-182. doi: 10.1007/978-3-030-12457-1_7. Adv Exp Med Biol. 2020. PMID: 31646510 Review.
Cited by
- Loss of calcium and increased apoptosis within the same neuron.
Turner CP, Connell J, Blackstone K, Ringler SL. Turner CP, et al. Brain Res. 2007 Jan 12;1128(1):50-60. doi: 10.1016/j.brainres.2006.10.039. Epub 2006 Nov 22. Brain Res. 2007. PMID: 17125751 Free PMC article. - Pentobarbitone modulates calcium transients in axons and synaptic boutons of hippocampal CA1 neurons.
Baudoux S, Empson RM, Richards CD. Baudoux S, et al. Br J Pharmacol. 2003 Nov;140(5):971-9. doi: 10.1038/sj.bjp.0705519. Epub 2003 Sep 29. Br J Pharmacol. 2003. PMID: 14517184 Free PMC article. - Presynaptic loss of dynamin-related protein 1 impairs synaptic vesicle release and recycling at the mouse calyx of Held.
Singh M, Denny H, Smith C, Granados J, Renden R. Singh M, et al. J Physiol. 2018 Dec;596(24):6263-6287. doi: 10.1113/JP276424. Epub 2018 Nov 10. J Physiol. 2018. PMID: 30285293 Free PMC article. - The Applications of Lattice Light-sheet Microscopy for Functional Volumetric Imaging of Hippocampal Neurons in a Three-Dimensional Culture System.
Chen CY, Liu YT, Lu CH, Lee PY, Tsai YC, Wu JS, Chen P, Chen BC. Chen CY, et al. Micromachines (Basel). 2019 Sep 11;10(9):599. doi: 10.3390/mi10090599. Micromachines (Basel). 2019. PMID: 31514427 Free PMC article. - Calcium imaging and BAPTA loading of amygdala astrocytes in mouse brain slices.
Baudon A, Clauss-Creusot E, Darbon P, Patwell R, Grinevich V, Charlet A. Baudon A, et al. STAR Protoc. 2022 Feb 8;3(1):101159. doi: 10.1016/j.xpro.2022.101159. eCollection 2022 Mar 18. STAR Protoc. 2022. PMID: 35199029 Free PMC article.
References
- Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8279-82 - PubMed
- J Neurophysiol. 1992 Oct;68(4):1167-77 - PubMed
- Biophys J. 1996 Feb;70(2):1069-81 - PubMed
- J Neurophysiol. 1996 Jul;76(1):381-400 - PubMed
- Biophys J. 1996 May;70(5):2120-30 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous