Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage - PubMed (original) (raw)
. 2000 Apr 13;404(6779):787-90.
doi: 10.1038/35008121.
D Edelstein, X L Du, S Yamagishi, T Matsumura, Y Kaneda, M A Yorek, D Beebe, P J Oates, H P Hammes, I Giardino, M Brownlee
Affiliations
- PMID: 10783895
- DOI: 10.1038/35008121
Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage
T Nishikawa et al. Nature. 2000.
Abstract
Diabetic hyperglycaemia causes a variety of pathological changes in small vessels, arteries and peripheral nerves. Vascular endothelial cells are an important target of hyperglycaemic damage, but the mechanisms underlying this damage are not fully understood. Three seemingly independent biochemical pathways are involved in the pathogenesis: glucose-induced activation of protein kinase C isoforms; increased formation of glucose-derived advanced glycation end-products; and increased glucose flux through the aldose reductase pathway. The relevance of each of these pathways is supported by animal studies in which pathway-specific inhibitors prevent various hyperglycaemia-induced abnormalities. Hyperglycaemia increases the production of reactive oxygen species inside cultured bovine aortic endothelial cells. Here we show that this increase in reactive oxygen species is prevented by an inhibitor of electron transport chain complex II, by an uncoupler of oxidative phosphorylation, by uncoupling protein-1 and by manganese superoxide dismutase. Normalizing levels of mitochondrial reactive oxygen species with each of these agents prevents glucose-induced activation of protein kinase C, formation of advanced glycation end-products, sorbitol accumulation and NFkappaB activation.
Similar articles
- Leptin induces mitochondrial superoxide production and monocyte chemoattractant protein-1 expression in aortic endothelial cells by increasing fatty acid oxidation via protein kinase A.
Yamagishi SI, Edelstein D, Du XL, Kaneda Y, Guzmán M, Brownlee M. Yamagishi SI, et al. J Biol Chem. 2001 Jul 6;276(27):25096-100. doi: 10.1074/jbc.M007383200. Epub 2001 May 7. J Biol Chem. 2001. PMID: 11342529 - Reactive oxygen species from mitochondria induce cyclooxygenase-2 gene expression in human mesangial cells: potential role in diabetic nephropathy.
Kiritoshi S, Nishikawa T, Sonoda K, Kukidome D, Senokuchi T, Matsuo T, Matsumura T, Tokunaga H, Brownlee M, Araki E. Kiritoshi S, et al. Diabetes. 2003 Oct;52(10):2570-7. doi: 10.2337/diabetes.52.10.2570. Diabetes. 2003. PMID: 14514642 - Homocysteine-induced endothelin-1 release is dependent on hyperglycaemia and reactive oxygen species production in bovine aortic endothelial cells.
Sethi AS, Lees DM, Douthwaite JA, Dawnay AB, Corder R. Sethi AS, et al. J Vasc Res. 2006;43(2):175-83. doi: 10.1159/000090947. Epub 2006 Jan 12. J Vasc Res. 2006. PMID: 16410680 - [Investigation of a novel mechanism of diabetic complications: impacts of mitochondrial reactive oxygen species].
Nishikawa T, Araki E. Nishikawa T, et al. Rinsho Byori. 2008 Aug;56(8):712-9. Rinsho Byori. 2008. PMID: 18800628 Review. Japanese. - Hyperglycemia-associated alterations in cellular signaling and dysregulated mitochondrial bioenergetics in human metabolic disorders.
Stefano GB, Challenger S, Kream RM. Stefano GB, et al. Eur J Nutr. 2016 Dec;55(8):2339-2345. doi: 10.1007/s00394-016-1212-2. Epub 2016 Apr 15. Eur J Nutr. 2016. PMID: 27084094 Free PMC article. Review.
Cited by
- The causal relationship between diabetes mellitus and the risk of sensorineural hearing loss: A Mendelian randomization study.
Guo Q, Niu D, Zhou L. Guo Q, et al. Medicine (Baltimore). 2024 Nov 8;103(45):e39950. doi: 10.1097/MD.0000000000039950. Medicine (Baltimore). 2024. PMID: 39533639 Free PMC article. - Is pulmonary vascular remodeling an intermediate link between hyperglycemia and adverse outcomes in patients with idiopathic pulmonary arterial hypertension? Insights from a multi-center cohort study.
Zhang S, Gao L, Li S, Luo M, Xi Q, Lin P, Zhao Z, Zhao Q, Yang T, Zeng Q, Huang Z, Li X, Duan A, Wang Y, Luo Q, Guo Y, Liu Z. Zhang S, et al. Cardiovasc Diabetol. 2024 Oct 28;23(1):384. doi: 10.1186/s12933-024-02476-9. Cardiovasc Diabetol. 2024. PMID: 39468502 Free PMC article. - Metabolomic Profiling Reveals That Exercise Lowers Biomarkers of Cardiac Dysfunction in Rats with Type 2 Diabetes.
Wang T, Ning M, Mo Y, Tian X, Fu Y, Laher I, Li S. Wang T, et al. Antioxidants (Basel). 2024 Sep 26;13(10):1167. doi: 10.3390/antiox13101167. Antioxidants (Basel). 2024. PMID: 39456421 Free PMC article. - Metabolic reprogramming of macrophages in the context of type 2 diabetes.
Witcoski Junior L, de Lima JD, Somensi AG, de Souza Santos LB, Paschoal GL, Uada TS, Bastos TSB, de Paula AGP, Dos Santos Luz RB, Czaikovski AP, Davanso MR, Braga TT. Witcoski Junior L, et al. Eur J Med Res. 2024 Oct 16;29(1):497. doi: 10.1186/s40001-024-02069-y. Eur J Med Res. 2024. PMID: 39407333 Free PMC article. Review. - Protein phosphatase PP2Cα S-glutathionylation regulates cell migration.
Kukulage DSK, Samarasinghe KTG, Matarage Don NNJ, Shivamadhu MC, Shishikura K, Schiff W, Mashhadi Ramezani F, Padmavathi R, Matthews ML, Ahn YH. Kukulage DSK, et al. J Biol Chem. 2024 Oct;300(10):107784. doi: 10.1016/j.jbc.2024.107784. Epub 2024 Sep 18. J Biol Chem. 2024. PMID: 39303918 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials