Herpes simplex virus type 2 growth and latency reactivation by cocultivation are inhibited with antisense oligonucleotides complementary to the translation initiation site of the large subunit of ribonucleotide reductase (RR1) - PubMed (original) (raw)

Herpes simplex virus type 2 growth and latency reactivation by cocultivation are inhibited with antisense oligonucleotides complementary to the translation initiation site of the large subunit of ribonucleotide reductase (RR1)

L Aurelian et al. Antisense Nucleic Acid Drug Dev. 2000 Apr.

Abstract

Antisense oligonucleotides complementary to the translation initiation site of the herpes simplex virus type 2 (HSV-2) large subunit of ribonucleotide reductase (RR1) were studied for their ability to inhibit RR1 expression, HSV-2 growth, and its reactivation from latently infected ganglia. The oligomers caused a significant decrease (90%-97% inhibition) in HSV-2 RR1 expression and inhibited HSV-2 growth, with IC50 and IC90 values of 0.11 and 1.0 microM, respectively. The titers of HSV-2 mutants that are respectively deleted in the PK (ICP10deltaPK) or RR (ICP10deltaRR) domains of RR1 were also significantly (500-20,000-fold) decreased, indicating that the antisense oligomers interfere with the independent contributions of the two RR1 functions (PK and RR) toward virus growth. Inhibition was sequence specific, as evidenced by the failure of a two-base mutant (RR1TImu) to inhibit protein expression and HSV-2 growth. Furthermore, the antisense oligomers inhibited HSV-2 reactivation by cocultivation of latently infected ganglia (0/8). Virus was reactivated from ganglia cultured without oligomers, in the presence of unrelated oligomers (6/8), or in the presence of the two-base mutant RR1TImu (5/8) (p < 0.007 by two-tailed Fisher exact test). HSV-2 growth was not inhibited by antisense oligonucleotides complementary to the splice junction of HSV-2 immediate-early (IE) pre-mRNA 4 and 5 (IE4,5SA) or the translation initiation site of IE mRNA 4 (IE4TI), although the respective HSV-1-specific oligomers inhibit HSV-1 growth.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources