Different myofilament nearest-neighbor interactions have distinctive effects on contractile behavior - PubMed (original) (raw)
Different myofilament nearest-neighbor interactions have distinctive effects on contractile behavior
M V Razumova et al. Biophys J. 2000 Jun.
Abstract
Cooperativity in contractile behavior of myofilament systems almost assuredly arises because of interactions between neighboring sites. These interactions may be of different kinds. Tropomyosin thin-filament regulatory units may have neighbors in steric blocking positions (off) or steric permissive positions (on). The position of these neighbors influence the tendency for the regulatory unit to assume the on or off state. Likewise, the tendency of a myosin cross-bridge to achieve a force-bearing state may be influenced by whether neighboring cross-bridges are in force-bearing states. Also, a cross-bridge in the force-bearing state may influence the tendency of a regulatory unit to enter the on state. We used a mathematical model to examine the influence of each of these three kinds of neighbor interactions on the steady-state force-pCa relation and on the dynamic force redevelopment process. Each neighbor interaction was unique in its effects on maximal Ca(2+)-activated force, position, and symmetry of the force-pCa curve and on the Hill coefficient. Also, each neighbor interaction had a distinctive effect on the time course of force development as assessed by its rate coefficient, k(dev). These diverse effects suggest that variations in all three kinds of nearest-neighbor interactions may be responsible for a wide variety of currently unexplained observations of myofilament contractile behavior.
Similar articles
- Activation of striated muscle: nearest-neighbor regulatory-unit and cross-bridge influence on myofilament kinetics.
Robinson JM, Wang Y, Kerrick WG, Kawai R, Cheung HC. Robinson JM, et al. J Mol Biol. 2002 Oct 4;322(5):1065-88. doi: 10.1016/s0022-2836(02)00855-0. J Mol Biol. 2002. PMID: 12367529 - Coupling of adjacent tropomyosins enhances cross-bridge-mediated cooperative activation in a markov model of the cardiac thin filament.
Campbell SG, Lionetti FV, Campbell KS, McCulloch AD. Campbell SG, et al. Biophys J. 2010 May 19;98(10):2254-64. doi: 10.1016/j.bpj.2010.02.010. Biophys J. 2010. PMID: 20483334 Free PMC article. - A cellular automaton model for the regulatory behavior of muscle thin filaments.
Zou G, Phillips GN Jr. Zou G, et al. Biophys J. 1994 Jul;67(1):11-28. doi: 10.1016/S0006-3495(94)80475-8. Biophys J. 1994. PMID: 7918978 Free PMC article. - The three filament model of skeletal muscle stability and force production.
Herzog W, Leonard T, Joumaa V, DuVall M, Panchangam A. Herzog W, et al. Mol Cell Biomech. 2012 Sep;9(3):175-91. Mol Cell Biomech. 2012. PMID: 23285733 Review. - Approaches to modeling crossbridges and calcium-dependent activation in cardiac muscle.
Rice JJ, de Tombe PP. Rice JJ, et al. Prog Biophys Mol Biol. 2004 Jun-Jul;85(2-3):179-95. doi: 10.1016/j.pbiomolbio.2004.01.011. Prog Biophys Mol Biol. 2004. PMID: 15142743 Review.
Cited by
- Effects of actin-myosin kinetics on the calcium sensitivity of regulated thin filaments.
Sich NM, O'Donnell TJ, Coulter SA, John OA, Carter MS, Cremo CR, Baker JE. Sich NM, et al. J Biol Chem. 2010 Dec 10;285(50):39150-9. doi: 10.1074/jbc.M110.142232. Epub 2010 Oct 2. J Biol Chem. 2010. PMID: 20889979 Free PMC article. - Multiscale modeling of twitch contractions in cardiac trabeculae.
Mijailovich SM, Prodanovic M, Poggesi C, Geeves MA, Regnier M. Mijailovich SM, et al. J Gen Physiol. 2021 Mar 1;153(3):e202012604. doi: 10.1085/jgp.202012604. J Gen Physiol. 2021. PMID: 33512405 Free PMC article. - Regulation of fibre contraction in a rat model of myocardial ischemia.
Han YS, Ogut O. Han YS, et al. PLoS One. 2010 Mar 4;5(3):e9528. doi: 10.1371/journal.pone.0009528. PLoS One. 2010. PMID: 20209103 Free PMC article. - Ising model of cardiac thin filament activation with nearest-neighbor cooperative interactions.
Rice JJ, Stolovitzky G, Tu Y, de Tombe PP. Rice JJ, et al. Biophys J. 2003 Feb;84(2 Pt 1):897-909. doi: 10.1016/S0006-3495(03)74907-8. Biophys J. 2003. PMID: 12547772 Free PMC article. - Cross-Bridge Group Ensembles Describing Cooperativity in Thermodynamically Consistent Way.
Kalda M, Peterson P, Vendelin M. Kalda M, et al. PLoS One. 2015 Sep 11;10(9):e0137438. doi: 10.1371/journal.pone.0137438. eCollection 2015. PLoS One. 2015. PMID: 26361396 Free PMC article.
References
- J Mol Biol. 1984 Dec 5;180(2):379-84 - PubMed
- Mol Cell Biochem. 1981 Feb 26;35(1):11-5 - PubMed
- Am J Physiol. 1987 Jul;253(1 Pt 1):C90-6 - PubMed
- J Mol Biol. 1987 Jun 20;195(4):885-96 - PubMed
- Am J Physiol. 1987 Oct;253(4 Pt 1):C541-6 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous