Playing second fiddle: second-strand processing and liberation of transposable elements from donor DNA - PubMed (original) (raw)
Review
Playing second fiddle: second-strand processing and liberation of transposable elements from donor DNA
C Turlan et al. Trends Microbiol. 2000 Jun.
Abstract
Retroviruses and many transposons of both prokaryotes and eukaryotes share similar chemical reactions in their transposition. Some elements remain attached to donor DNA during transposition and their translocation results in a fusion between target and donor replicons. However, many elements are separated from their flanking donor DNA prior to their insertion into a target site, which requires processing of both strands at both ends of the element. A variety of strategies have been adopted for cleavage of the second, complementary strand to liberate the transposon.
Similar articles
- Integrating DNA: transposases and retroviral integrases.
Haren L, Ton-Hoang B, Chandler M. Haren L, et al. Annu Rev Microbiol. 1999;53:245-81. doi: 10.1146/annurev.micro.53.1.245. Annu Rev Microbiol. 1999. PMID: 10547692 Review. - Multiple DNA processing reactions underlie Tn7 transposition.
Gary PA, Biery MC, Bainton RJ, Craig NL. Gary PA, et al. J Mol Biol. 1996 Mar 29;257(2):301-16. doi: 10.1006/jmbi.1996.0164. J Mol Biol. 1996. PMID: 8609625 - Bacterial transposases and retroviral integrases.
Polard P, Chandler M. Polard P, et al. Mol Microbiol. 1995 Jan;15(1):13-23. doi: 10.1111/j.1365-2958.1995.tb02217.x. Mol Microbiol. 1995. PMID: 7752887 Review. - Excision of the Drosophila mariner transposon Mos1. Comparison with bacterial transposition and V(D)J recombination.
Dawson A, Finnegan DJ. Dawson A, et al. Mol Cell. 2003 Jan;11(1):225-35. doi: 10.1016/s1097-2765(02)00798-0. Mol Cell. 2003. PMID: 12535535 - Transposase subunit architecture and its relationship to genome size and the rate of transposition in prokaryotes and eukaryotes.
Blundell-Hunter G, Tellier M, Chalmers R. Blundell-Hunter G, et al. Nucleic Acids Res. 2018 Oct 12;46(18):9637-9646. doi: 10.1093/nar/gky794. Nucleic Acids Res. 2018. PMID: 30184164 Free PMC article.
Cited by
- Conjugative interaction induces transposition of ISPst9 in Pseudomonas stutzeri AN10.
Christie-Oleza JA, Lanfranconi MP, Nogales B, Lalucat J, Bosch R. Christie-Oleza JA, et al. J Bacteriol. 2009 Feb;191(4):1239-47. doi: 10.1128/JB.01071-08. Epub 2008 Dec 5. J Bacteriol. 2009. PMID: 19060139 Free PMC article. - Diversity of Tn4001 transposition products: the flanking IS256 elements can form tandem dimers and IS circles.
Prudhomme M, Turlan C, Claverys JP, Chandler M. Prudhomme M, et al. J Bacteriol. 2002 Jan;184(2):433-43. doi: 10.1128/JB.184.2.433-443.2002. J Bacteriol. 2002. PMID: 11751820 Free PMC article. - Bacterial insertion sequences: their genomic impact and diversity.
Siguier P, Gourbeyre E, Chandler M. Siguier P, et al. FEMS Microbiol Rev. 2014 Sep;38(5):865-91. doi: 10.1111/1574-6976.12067. Epub 2014 Feb 26. FEMS Microbiol Rev. 2014. PMID: 24499397 Free PMC article. Review. - Mechanisms of DNA Transposition.
Hickman AB, Dyda F. Hickman AB, et al. Microbiol Spectr. 2015 Apr;3(2):MDNA3-0034-2014. doi: 10.1128/microbiolspec.MDNA3-0034-2014. Microbiol Spectr. 2015. PMID: 26104718 Free PMC article. Review. - Protein-DNA interactions define the mechanistic aspects of circle formation and insertion reactions in IS2 transposition.
Lewis LA, Astatke M, Umekubo PT, Alvi S, Saby R, Afrose J, Oliveira PH, Monteiro GA, Prazeres DM. Lewis LA, et al. Mob DNA. 2012 Jan 26;3(1):1. doi: 10.1186/1759-8753-3-1. Mob DNA. 2012. PMID: 22277150 Free PMC article.