Mechanisms of visual attention in the human cortex - PubMed (original) (raw)
Review
Mechanisms of visual attention in the human cortex
S Kastner et al. Annu Rev Neurosci. 2000.
Abstract
A typical scene contains many different objects that, because of the limited processing capacity of the visual system, compete for neural representation. The competition among multiple objects in visual cortex can be biased by both bottom-up sensory-driven mechanisms and top-down influences, such as selective attention. Functional brain imaging studies reveal that, both in the absence and in the presence of visual stimulation, biasing signals due to selective attention can modulate neural activity in visual cortex in several ways. Although the competition among stimuli for representation is ultimately resolved within visual cortex, the source of top-down biasing signals derives from a network of areas in frontal and parietal cortex.
Similar articles
- The neural basis of biased competition in human visual cortex.
Kastner S, Ungerleider LG. Kastner S, et al. Neuropsychologia. 2001;39(12):1263-76. doi: 10.1016/s0028-3932(01)00116-6. Neuropsychologia. 2001. PMID: 11566310 Review. - Attentional control of the processing of neural and emotional stimuli.
Pessoa L, Kastner S, Ungerleider LG. Pessoa L, et al. Brain Res Cogn Brain Res. 2002 Dec;15(1):31-45. doi: 10.1016/s0926-6410(02)00214-8. Brain Res Cogn Brain Res. 2002. PMID: 12433381 Review. - Visual attention mediated by biased competition in extrastriate visual cortex.
Desimone R. Desimone R. Philos Trans R Soc Lond B Biol Sci. 1998 Aug 29;353(1373):1245-55. doi: 10.1098/rstb.1998.0280. Philos Trans R Soc Lond B Biol Sci. 1998. PMID: 9770219 Free PMC article. - A neural model of the temporal dynamics of figure-ground segregation in motion perception.
Raudies F, Neumann H. Raudies F, et al. Neural Netw. 2010 Mar;23(2):160-76. doi: 10.1016/j.neunet.2009.10.005. Epub 2009 Oct 30. Neural Netw. 2010. PMID: 19931405 - Attentional load and sensory competition in human vision: modulation of fMRI responses by load at fixation during task-irrelevant stimulation in the peripheral visual field.
Schwartz S, Vuilleumier P, Hutton C, Maravita A, Dolan RJ, Driver J. Schwartz S, et al. Cereb Cortex. 2005 Jun;15(6):770-86. doi: 10.1093/cercor/bhh178. Epub 2004 Sep 30. Cereb Cortex. 2005. PMID: 15459076
Cited by
- The DLPFC is centrally involved in resolving Stroop conflicts, suppressing distracting sensory input within the auditory and visual system.
Ehlis AC, Zarantonello L, Haeussinger FB, Rohe T, Rosenbaum D, Fallgatter AJ, Maier MJ. Ehlis AC, et al. Front Psychol. 2024 Oct 18;15:1427455. doi: 10.3389/fpsyg.2024.1427455. eCollection 2024. Front Psychol. 2024. PMID: 39492809 Free PMC article. - Functional MRI of imprinting memory in awake newborn domestic chicks.
Behroozi M, Lorenzi E, Tabrik S, Tegenthoff M, Gozzi A, Güntürkün O, Vallortigara G. Behroozi M, et al. Commun Biol. 2024 Oct 15;7(1):1326. doi: 10.1038/s42003-024-06991-z. Commun Biol. 2024. PMID: 39406830 Free PMC article. - Distinct visual processing networks for foveal and peripheral visual fields.
Zhang J, Zhou H, Wang S. Zhang J, et al. Commun Biol. 2024 Oct 4;7(1):1259. doi: 10.1038/s42003-024-06980-2. Commun Biol. 2024. PMID: 39367101 Free PMC article. - Irregularity of visual motion perception and negative symptoms in schizophrenia.
Fan Y, Tao Y, Wang J, Gao Y, Wei W, Zheng C, Zhang X, Song XM, Northoff G. Fan Y, et al. Schizophrenia (Heidelb). 2024 Sep 30;10(1):82. doi: 10.1038/s41537-024-00496-8. Schizophrenia (Heidelb). 2024. PMID: 39349502 Free PMC article. - Manipulating attentional priority creates a trade-off between memory and sensory representations in human visual cortex.
Rademaker RL, Serences JT. Rademaker RL, et al. bioRxiv [Preprint]. 2024 Sep 16:2024.09.16.613302. doi: 10.1101/2024.09.16.613302. bioRxiv. 2024. PMID: 39345376 Free PMC article. Preprint.