Interorganelle transport of aminoglycerophospholipids - PubMed (original) (raw)
Review
Interorganelle transport of aminoglycerophospholipids
D R Voelker. Biochim Biophys Acta. 2000.
Abstract
The aminoglycerophospholipids of eukaryotic cells, phosphatidylserine (PtdSer), phosphatidylethanolamine (PtdEtn), and phosphatidylcholine (PtdCho), can be synthesized by multiple pathways. The PtdSer pathway encompasses the synthesis of PtdSer, its decarboxylation to PtdEtn and subsequent methylation reactions to form PtdCho. The Kennedy pathways consist of the synthesis of PtdEtn and PtdCho from Etn and Cho precursors via CDP-Etn and CDP-Cho intermediates. The reactions along the PtdSer pathway are spatially segregated with PtdSer synthesis occurring in the endoplasmic reticulum or mitochondria-associated membrane (MAM), PtdEtn formation occurring in the mitochondria and Golgi/vacuole compartments and PtdCho formation occurring in the endoplasmic reticulum or MAM. The organelle-specific metabolism of the different lipids in the PtdSer pathway has provided a convenient biochemical means for defining events in the interorganelle transport of the aminoglycerophospholipids in intact cells, isolated organelles and permeabilized cells. Studies with both mammalian cells and yeast demonstrate many significant similarities in lipid transport processes between the two systems. Genetic experiments in yeast now provide the tools to create new strains with mutations along the PtdSer pathway that can be conditionally rescued by the Kennedy pathway reactions. The genetic studies in yeast indicate that it is now possible to begin to define genes that participate in the interorganelle transport of the aminoglycerophospholipids.
Similar articles
- Contribution of different biosynthetic pathways to species selectivity of aminoglycerophospholipids assembled into mitochondrial membranes of the yeast Saccharomyces cerevisiae.
Bürgermeister M, Birner-Grünberger R, Heyn M, Daum G. Bürgermeister M, et al. Biochim Biophys Acta. 2004 Nov 8;1686(1-2):148-60. doi: 10.1016/j.bbalip.2004.09.005. Biochim Biophys Acta. 2004. PMID: 15522831 - Phospholipid metabolism of serine in Plasmodium-infected erythrocytes involves phosphatidylserine and direct serine decarboxylation.
Elabbadi N, Ancelin ML, Vial HJ. Elabbadi N, et al. Biochem J. 1997 Jun 1;324 ( Pt 2)(Pt 2):435-45. doi: 10.1042/bj3240435. Biochem J. 1997. PMID: 9182701 Free PMC article. - Contribution of different pathways to the supply of phosphatidylethanolamine and phosphatidylcholine to mitochondrial membranes of the yeast Saccharomyces cerevisiae.
Bürgermeister M, Birner-Grünberger R, Nebauer R, Daum G. Bürgermeister M, et al. Biochim Biophys Acta. 2004 Nov 8;1686(1-2):161-8. doi: 10.1016/j.bbalip.2004.09.007. Biochim Biophys Acta. 2004. PMID: 15522832 - New perspectives on the regulation of intermembrane glycerophospholipid traffic.
Voelker DR. Voelker DR. J Lipid Res. 2003 Mar;44(3):441-9. doi: 10.1194/jlr.R200020-JLR200. Epub 2003 Jan 16. J Lipid Res. 2003. PMID: 12562848 Review. - Biogenesis and cellular dynamics of aminoglycerophospholipids.
Birner R, Daum G. Birner R, et al. Int Rev Cytol. 2003;225:273-323. doi: 10.1016/s0074-7696(05)25007-6. Int Rev Cytol. 2003. PMID: 12696595 Review.
Cited by
- Phosphatidylserine, inflammation, and central nervous system diseases.
Ma X, Li X, Wang W, Zhang M, Yang B, Miao Z. Ma X, et al. Front Aging Neurosci. 2022 Aug 3;14:975176. doi: 10.3389/fnagi.2022.975176. eCollection 2022. Front Aging Neurosci. 2022. PMID: 35992593 Free PMC article. Review. - Mitochondrial phosphatidylserine decarboxylase from higher plants. Functional complementation in yeast, localization in plants, and overexpression in Arabidopsis.
Rontein D, Wu WI, Voelker DR, Hanson AD. Rontein D, et al. Plant Physiol. 2003 Jul;132(3):1678-87. doi: 10.1104/pp.103.023242. Plant Physiol. 2003. PMID: 12857846 Free PMC article. - A Yeast Mutant Deleted of GPH1 Bears Defects in Lipid Metabolism.
Gsell M, Fankl A, Klug L, Mascher G, Schmidt C, Hrastnik C, Zellnig G, Daum G. Gsell M, et al. PLoS One. 2015 Sep 1;10(9):e0136957. doi: 10.1371/journal.pone.0136957. eCollection 2015. PLoS One. 2015. PMID: 26327557 Free PMC article. - Endoplasmic Reticulum-Mitochondria Contacts: A Potential Therapy Target for Cardiovascular Remodeling-Associated Diseases.
Wang Y, Zhang X, Wen Y, Li S, Lu X, Xu R, Li C. Wang Y, et al. Front Cell Dev Biol. 2021 Nov 10;9:774989. doi: 10.3389/fcell.2021.774989. eCollection 2021. Front Cell Dev Biol. 2021. PMID: 34858991 Free PMC article. Review. - Endoplasmic reticulum structure and interconnections with other organelles.
English AR, Voeltz GK. English AR, et al. Cold Spring Harb Perspect Biol. 2013 Apr 1;5(4):a013227. doi: 10.1101/cshperspect.a013227. Cold Spring Harb Perspect Biol. 2013. PMID: 23545422 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases