Intracardiac pressures in the human fetus - PubMed (original) (raw)
Intracardiac pressures in the human fetus
P Johnson et al. Heart. 2000 Jul.
Abstract
Objective: To obtain normal values for intracardiac pressures in the human fetus.
Design: Intracardiac pressures were measured directly in the four chambers of the human fetal heart during clinically indicated invasive obstetric procedures.
Setting: Department of fetal medicine in a tertiary referral centre.
Patients: 39 fetuses between 16 and 29 weeks of gestation.
Results: The ventricular waveforms obtained were similar to those found in postnatal life. There was an increase in ventricular systolic and end diastolic pressures with advancing gestation. There was no difference between left and right ventricular pressures. Atrial pressures were equal and remained constant in the gestational age range studied.
Conclusions: Fetal cardiovascular pressure measurements in the normal fetus assist in understanding the fetal circulation, and provide a basis for the assessment of cases of congenital heart disease that may be amenable to intrauterine treatment.
Figures
Figure 1
Pressure waveform of (A) left and (B) right ventricle in a normal fetal heart at 22 weeks' gestation
Figure 2
Plot of left ventricular pressure showing regression lines (coefficient 1.7416 (systolic), 0.7018 (diastolic)). LV, left ventricle.
Figure 3
Plot of right ventricular pressure showing regression lines (coefficient 2.2410 (systolic), 0.6037 (diastolic)). RV, right ventricle.
Figure 4
Left ventricular pressure waveforms at (A) 16 weeks and (B) 27 weeks showing the change in appearance of atrial contraction.
Similar articles
- Human fetal right ventricular ejection force under abnormal loading conditions during the second half of pregnancy.
Rasanen J, Debbs RH, Wood DC, Weiner S, Weil SR, Huhta JC. Rasanen J, et al. Ultrasound Obstet Gynecol. 1997 Nov;10(5):325-32. doi: 10.1046/j.1469-0705.1997.10050325.x. Ultrasound Obstet Gynecol. 1997. PMID: 9444046 - Evaluation of Myocardial Function According to Early Diastolic Intraventricular Pressure Difference in Fetuses.
Yamamoto Y, Takahashi K, Takemoto Y, Kobayashi M, Itatani K, Shimizu T, Itakura A, Takeda S. Yamamoto Y, et al. J Am Soc Echocardiogr. 2017 Nov;30(11):1130-1137.e1. doi: 10.1016/j.echo.2017.07.013. Epub 2017 Sep 9. J Am Soc Echocardiogr. 2017. PMID: 28899642 - Reference values of fetal ductus venosus, inferior vena cava and hepatic vein blood flow velocities and waveform indices during the second and third trimester of pregnancy.
Axt-Fliedner R, Wiegank U, Fetsch C, Friedrich M, Krapp M, Georg T, Diedrich K. Axt-Fliedner R, et al. Arch Gynecol Obstet. 2004 Jul;270(1):46-55. doi: 10.1007/s00404-003-0586-6. Epub 2004 Mar 12. Arch Gynecol Obstet. 2004. PMID: 15190437 - Heart stroke volume, cardiac output, and ejection fraction in 265 normal fetus in the second half of gestation assessed by 4D ultrasound using spatio-temporal image correlation.
Simioni C, Nardozza LM, Araujo Júnior E, Rolo LC, Zamith M, Caetano AC, Moron AF. Simioni C, et al. J Matern Fetal Neonatal Med. 2011 Sep;24(9):1159-67. doi: 10.3109/14767058.2010.545921. Epub 2011 Jan 21. J Matern Fetal Neonatal Med. 2011. PMID: 21250911 - Cardiac changes in the intrauterine growth-restricted fetus.
Bahtiyar MO, Copel JA. Bahtiyar MO, et al. Semin Perinatol. 2008 Jun;32(3):190-3. doi: 10.1053/j.semperi.2008.02.010. Semin Perinatol. 2008. PMID: 18482620 Review.
Cited by
- Fetal cardiac muscle contractility decreases with gestational age: a color-coded tissue velocity imaging study.
Elmstedt N, Ferm-Widlund K, Lind B, Brodin LÅ, Westgren M. Elmstedt N, et al. Cardiovasc Ultrasound. 2012 May 9;10:19. doi: 10.1186/1476-7120-10-19. Cardiovasc Ultrasound. 2012. PMID: 22571652 Free PMC article. - Fluid Mechanical Effects of Fetal Aortic Valvuloplasty for Cases of Critical Aortic Stenosis with Evolving Hypoplastic Left Heart Syndrome.
Wong HS, Li B, Tulzer A, Tulzer G, Yap CH. Wong HS, et al. Ann Biomed Eng. 2023 Jul;51(7):1485-1498. doi: 10.1007/s10439-023-03152-x. Epub 2023 Feb 13. Ann Biomed Eng. 2023. PMID: 36780051 Free PMC article. - Development of Novel Sutureless Balloon Expandable Fetal Heart Valve Device Using Absorbable Polycaprolactone Leaflets.
Bhat SS, Bui HT, Farnan A, Vietmeyer K, Armstrong AK, Breuer CK, Dasi LP. Bhat SS, et al. Ann Biomed Eng. 2024 Feb;52(2):386-395. doi: 10.1007/s10439-023-03386-9. Epub 2023 Oct 20. Ann Biomed Eng. 2024. PMID: 37864043 - Changes in Cardiomyocyte Cell Cycle and Hypertrophic Growth During Fetal to Adult in Mammals.
Bishop SP, Zhou Y, Nakada Y, Zhang J. Bishop SP, et al. J Am Heart Assoc. 2021 Jan 19;10(2):e017839. doi: 10.1161/JAHA.120.017839. Epub 2021 Jan 5. J Am Heart Assoc. 2021. PMID: 33399005 Free PMC article. Review. - Z-score model of foetal ascending aorta diameter distensibility.
Chen F, Zeng S, Yi A, Chen L, Zhou D, Liu Y, Yao L. Chen F, et al. Front Cardiovasc Med. 2022 Aug 11;9:858235. doi: 10.3389/fcvm.2022.858235. eCollection 2022. Front Cardiovasc Med. 2022. PMID: 36035956 Free PMC article.
References
- Nihon Sanka Fujinka Gakkai Zasshi. 1991 Dec;43(12):1606-12 - PubMed
- Lancet. 1991 Dec 7;338(8780):1412-4 - PubMed
- Am Heart J. 1994 Apr;127(4 Pt 1):955-8 - PubMed
- J Am Soc Echocardiogr. 1996 May-Jun;9(3):281-5 - PubMed
- Pediatrics. 1997 Jun;99(6):E10 - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources