Conditional and unconditional categorical regression models with missing covariates - PubMed (original) (raw)
Conditional and unconditional categorical regression models with missing covariates
G A Satten et al. Biometrics. 2000 Jun.
Abstract
We consider methods for analyzing categorical regression models when some covariates (Z) are completely observed but other covariates (X) are missing for some subjects. When data on X are missing at random (i.e., when the probability that X is observed does not depend on the value of X itself), we present a likelihood approach for the observed data that allows the same nuisance parameters to be eliminated in a conditional analysis as when data are complete. An example of a matched case-control study is used to demonstrate our approach.
Similar articles
- Likelihood methods for incomplete longitudinal binary responses with incomplete categorical covariates.
Lipsitz SR, Ibrahim JG, Fitzmaurice GM. Lipsitz SR, et al. Biometrics. 1999 Mar;55(1):214-23. doi: 10.1111/j.0006-341x.1999.00214.x. Biometrics. 1999. PMID: 11318157 - Empirical Likelihood in Nonignorable Covariate-Missing Data Problems.
Xie Y, Zhang B. Xie Y, et al. Int J Biostat. 2017 Apr 20;13(1):/j/ijb.2017.13.issue-1/ijb-2016-0053/ijb-2016-0053.xml. doi: 10.1515/ijb-2016-0053. Int J Biostat. 2017. PMID: 28441139 - Likelihood methods for regression models with expensive variables missing by design.
Zhao Y, Lawless JF, McLeish DL. Zhao Y, et al. Biom J. 2009 Feb;51(1):123-36. doi: 10.1002/bimj.200810487. Biom J. 2009. PMID: 19197954 - On the EM algorithm for overdispersed count data.
McLachlan GJ. McLachlan GJ. Stat Methods Med Res. 1997 Mar;6(1):76-98. doi: 10.1177/096228029700600106. Stat Methods Med Res. 1997. PMID: 9185291 Review. - Methods for observed-cluster inference when cluster size is informative: a review and clarifications.
Seaman SR, Pavlou M, Copas AJ. Seaman SR, et al. Biometrics. 2014 Jun;70(2):449-56. doi: 10.1111/biom.12151. Epub 2014 Jan 30. Biometrics. 2014. PMID: 24479899 Free PMC article. Review.
Cited by
- Efficient estimation of indirect effects in case-control studies using a unified likelihood framework.
Satten GA, Curtis SW, Solis-Lemus C, Leslie EJ, Epstein MP. Satten GA, et al. Stat Med. 2022 Jul 10;41(15):2879-2893. doi: 10.1002/sim.9390. Epub 2022 Mar 30. Stat Med. 2022. PMID: 35352841 Free PMC article. - Handling missing data in matched case-control studies using multiple imputation.
Seaman SR, Keogh RH. Seaman SR, et al. Biometrics. 2015 Dec;71(4):1150-9. doi: 10.1111/biom.12358. Epub 2015 Aug 3. Biometrics. 2015. PMID: 26237003 Free PMC article. - Missing exposure data in stereotype regression model: application to matched case-control study with disease subclassification.
Ahn J, Mukherjee B, Gruber SB, Sinha S. Ahn J, et al. Biometrics. 2011 Jun;67(2):546-58. doi: 10.1111/j.1541-0420.2010.01453.x. Epub 2010 Jun 16. Biometrics. 2011. PMID: 20560931 Free PMC article. - Inference of the haplotype effect in a matched case-control study using unphased genotype data.
Sinha S, Gruber SB, Mukherjee B, Rennert G. Sinha S, et al. Int J Biostat. 2008 May 8;4(1):Article 6. doi: 10.2202/1557-4679.1079. Int J Biostat. 2008. PMID: 20231916 Free PMC article. - A semiparametric missing-data-induced intensity method for missing covariate data in individually matched case-control studies.
Gebregziabher M, Langholz B. Gebregziabher M, et al. Biometrics. 2010 Sep;66(3):845-54. doi: 10.1111/j.1541-0420.2009.01322.x. Biometrics. 2010. PMID: 19751251 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources