A rat model of chronic respiratory infection with Pseudomonas aeruginosa - PubMed (original) (raw)
A rat model of chronic respiratory infection with Pseudomonas aeruginosa
H A Cash et al. Am Rev Respir Dis. 1979 Mar.
Abstract
Chronic, nonlethal, pulmonary infection of rats by Pseudomonas aeruginosa can be initiated by intratracheal inoculation of 10(4) bacteria enmeshed in agar beads. The number of bacteria recoverable from the lung increased to approximately 10(6) within 3 days and remained at that number during 35 days of observation. Histologic examination of the infected lungs revealed lesions resembling those seen in lung tissue of humans with acute or chronic nonbacteremic, Pseudomonas aeruginosa pneumonia, including the presence of goblet-cell hyperplasia, focal areas of necrosis, and acute and chronic inflammatory infiltrate. This model should be useful for investigating the interactions between microbial virulence factors and host defense mechanisms.
Similar articles
- Assessing Pseudomonas aeruginosa virulence and the host response using murine models of acute and chronic lung infection.
Kukavica-Ibrulj I, Facchini M, Cigana C, Levesque RC, Bragonzi A. Kukavica-Ibrulj I, et al. Methods Mol Biol. 2014;1149:757-71. doi: 10.1007/978-1-4939-0473-0_58. Methods Mol Biol. 2014. PMID: 24818948 - Short communication. Role of agar beads in the pathogenicity of Pseudomonas aeruginosa in the rat respiratory tract.
Nacucchio MC, Cerquetti MC, Meiss RP, Sordelli DO. Nacucchio MC, et al. Pediatr Res. 1984 Mar;18(3):295-6. doi: 10.1203/00006450-198403000-00018. Pediatr Res. 1984. PMID: 6728563 - Effects of combined treatment with ambroxol and ciprofloxacin on catheter-associated Pseudomonas aeruginosa biofilms in a rat model.
Lu Q, Yu J, Bao L, Ran T, Zhong H. Lu Q, et al. Chemotherapy. 2013;59(1):51-6. doi: 10.1159/000351107. Epub 2013 Jun 29. Chemotherapy. 2013. PMID: 23816803 - Insights into host-pathogen interactions from state-of-the-art animal models of respiratory Pseudomonas aeruginosa infections.
Lorenz A, Pawar V, Häussler S, Weiss S. Lorenz A, et al. FEBS Lett. 2016 Nov;590(21):3941-3959. doi: 10.1002/1873-3468.12454. Epub 2016 Nov 1. FEBS Lett. 2016. PMID: 27730639 Review. - Targeting mechanisms of Pseudomonas aeruginosa pathogenesis.
Kipnis E, Sawa T, Wiener-Kronish J. Kipnis E, et al. Med Mal Infect. 2006 Feb;36(2):78-91. doi: 10.1016/j.medmal.2005.10.007. Epub 2006 Jan 19. Med Mal Infect. 2006. PMID: 16427231 Review.
Cited by
- A unique regulator contributes to quorum sensing and virulence in Burkholderia cenocepacia.
O'Grady EP, Viteri DF, Sokol PA. O'Grady EP, et al. PLoS One. 2012;7(5):e37611. doi: 10.1371/journal.pone.0037611. Epub 2012 May 18. PLoS One. 2012. PMID: 22624054 Free PMC article. - Tracheal tube biofilm as a source of bacterial colonization of the lung.
Inglis TJ, Millar MR, Jones JG, Robinson DA. Inglis TJ, et al. J Clin Microbiol. 1989 Sep;27(9):2014-8. doi: 10.1128/jcm.27.9.2014-2018.1989. J Clin Microbiol. 1989. PMID: 2778064 Free PMC article. - Role of exoenzyme S in chronic Pseudomonas aeruginosa lung infections.
Nicas TI, Frank DW, Stenzel P, Lile JD, Iglewski BH. Nicas TI, et al. Eur J Clin Microbiol. 1985 Apr;4(2):175-9. doi: 10.1007/BF02013593. Eur J Clin Microbiol. 1985. PMID: 2988945 - Importance of the ornibactin and pyochelin siderophore transport systems in Burkholderia cenocepacia lung infections.
Visser MB, Majumdar S, Hani E, Sokol PA. Visser MB, et al. Infect Immun. 2004 May;72(5):2850-7. doi: 10.1128/IAI.72.5.2850-2857.2004. Infect Immun. 2004. PMID: 15102796 Free PMC article. - Comparative analysis of plant and animal models for characterization of Burkholderia cepacia virulence.
Bernier SP, Silo-Suh L, Woods DE, Ohman DE, Sokol PA. Bernier SP, et al. Infect Immun. 2003 Sep;71(9):5306-13. doi: 10.1128/IAI.71.9.5306-5313.2003. Infect Immun. 2003. PMID: 12933878 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources