Crystal structures of fructose 1,6-bisphosphatase: mechanism of catalysis and allosteric inhibition revealed in product complexes - PubMed (original) (raw)
. 2000 Jul 25;39(29):8565-74.
doi: 10.1021/bi000574g.
Affiliations
- PMID: 10913263
- DOI: 10.1021/bi000574g
Crystal structures of fructose 1,6-bisphosphatase: mechanism of catalysis and allosteric inhibition revealed in product complexes
J Y Choe et al. Biochemistry. 2000.
Abstract
Crystal structures of metal-product complexes of fructose 1, 6-bisphosphatase (FBPase) reveal competition between AMP and divalent cations. In the presence of AMP, the Zn(2+)-product and Mg(2+)-product complexes have a divalent cation present only at one of three metal binding sites (site 1). The enzyme is in the T-state conformation with a disordered loop of residues 52-72 (loop 52-72). In the absence of AMP, the enzyme crystallizes in the R-state conformation, with loop 52-72 associated with the active site. In structures without AMP, three metal-binding sites are occupied by Zn(2+) and two of three metal sites (sites 1 and 2) by Mg(2+). Evidently, the association of AMP with FBPase disorders loop 52-72, the consequence of which is the release of cations from two of three metal binding sites. In the Mg(2+) complexes (but not the Zn(2+) complexes), the 1-OH group of fructose 6-phosphate (F6P) coordinates to the metal at site 1 and is oriented for a nucleophilic attack on the bound phosphate molecule. A mechanism is presented for the forward reaction, in which Asp74 and Glu98 together generate a hydroxide anion coordinated to the Mg(2+) at site 2, which then displaces F6P. Development of negative charge on the 1-oxygen of F6P is stabilized by its coordination to the Mg(2+) at site 1.
Similar articles
- Tryptophan fluorescence reveals the conformational state of a dynamic loop in recombinant porcine fructose-1,6-bisphosphatase.
Nelson SW, Iancu CV, Choe JY, Honzatko RB, Fromm HJ. Nelson SW, et al. Biochemistry. 2000 Sep 12;39(36):11100-6. doi: 10.1021/bi000609c. Biochemistry. 2000. PMID: 10998248 - Role of a dynamic loop in cation activation and allosteric regulation of recombinant porcine fructose-1,6-bisphosphatase.
Choe JY, Poland BW, Fromm HJ, Honzatko RB. Choe JY, et al. Biochemistry. 1998 Aug 18;37(33):11441-50. doi: 10.1021/bi981112u. Biochemistry. 1998. PMID: 9708979 - Crystal structures of the active site mutant (Arg-243-->Ala) in the T and R allosteric states of pig kidney fructose-1,6-bisphosphatase expressed in Escherichia coli.
Stec B, Abraham R, Giroux E, Kantrowitz ER. Stec B, et al. Protein Sci. 1996 Aug;5(8):1541-53. doi: 10.1002/pro.5560050810. Protein Sci. 1996. PMID: 8844845 Free PMC article. - R-state AMP complex reveals initial steps of the quaternary transition of fructose-1,6-bisphosphatase.
Iancu CV, Mukund S, Fromm HJ, Honzatko RB. Iancu CV, et al. J Biol Chem. 2005 May 20;280(20):19737-45. doi: 10.1074/jbc.M501011200. Epub 2005 Mar 14. J Biol Chem. 2005. PMID: 15767255 - [Recent advance in the discovery of allosteric inhibitors binding to the AMP site of fructose-1,6-bisphosphatase].
Li ZM, Bie JB, Song HR, Xu BL. Li ZM, et al. Yao Xue Xue Bao. 2011 Nov;46(11):1291-300. Yao Xue Xue Bao. 2011. PMID: 22260018 Review. Chinese.
Cited by
- Text mining improves prediction of protein functional sites.
Verspoor KM, Cohn JD, Ravikumar KE, Wall ME. Verspoor KM, et al. PLoS One. 2012;7(2):e32171. doi: 10.1371/journal.pone.0032171. Epub 2012 Feb 29. PLoS One. 2012. PMID: 22393388 Free PMC article. - Sensing and signaling of oxidative stress in chloroplasts by inactivation of the SAL1 phosphoadenosine phosphatase.
Chan KX, Mabbitt PD, Phua SY, Mueller JW, Nisar N, Gigolashvili T, Stroeher E, Grassl J, Arlt W, Estavillo GM, Jackson CJ, Pogson BJ. Chan KX, et al. Proc Natl Acad Sci U S A. 2016 Aug 2;113(31):E4567-76. doi: 10.1073/pnas.1604936113. Epub 2016 Jul 18. Proc Natl Acad Sci U S A. 2016. PMID: 27432987 Free PMC article. - Fructose-1,6-bisphosphatase loss modulates STAT3-dependent expression of PD-L1 and cancer immunity.
Wang B, Zhou Y, Zhang J, Jin X, Wu H, Huang H. Wang B, et al. Theranostics. 2020 Jan 1;10(3):1033-1045. doi: 10.7150/thno.38137. eCollection 2020. Theranostics. 2020. PMID: 31938049 Free PMC article. - Structures of Leishmania Fructose-1,6-Bisphosphatase Reveal Species-Specific Differences in the Mechanism of Allosteric Inhibition.
Yuan M, Vásquez-Valdivieso MG, McNae IW, Michels PAM, Fothergill-Gilmore LA, Walkinshaw MD. Yuan M, et al. J Mol Biol. 2017 Oct 13;429(20):3075-3089. doi: 10.1016/j.jmb.2017.08.010. Epub 2017 Sep 4. J Mol Biol. 2017. PMID: 28882541 Free PMC article. - Fructose-1,6-bisphosphatase 1 functions as a protein phosphatase to dephosphorylate histone H3 and suppresses PPARα-regulated gene transcription and tumour growth.
Wang Z, Li M, Jiang H, Luo S, Shao F, Xia Y, Yang M, Ren X, Liu T, Yan M, Qian X, He H, Guo D, Duan Y, Wu K, Wang L, Ji G, Shen Y, Li L, Zheng P, Dong B, Fang J, Zheng M, Liang T, Li H, Yu R, Xu D, Lu Z. Wang Z, et al. Nat Cell Biol. 2022 Nov;24(11):1655-1665. doi: 10.1038/s41556-022-01009-4. Epub 2022 Oct 20. Nat Cell Biol. 2022. PMID: 36266488
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases