Optimal shapes of compact strings - PubMed (original) (raw)
. 2000 Jul 20;406(6793):287-90.
doi: 10.1038/35018538.
Affiliations
- PMID: 10917526
- DOI: 10.1038/35018538
Optimal shapes of compact strings
A Maritan et al. Nature. 2000.
Abstract
Optimal geometrical arrangements, such as the stacking of atoms, are of relevance in diverse disciplines. A classic problem is the determination of the optimal arrangement of spheres in three dimensions in order to achieve the highest packing fraction; only recently has it been proved that the answer for infinite systems is a face-centred-cubic lattice. This simply stated problem has had a profound impact in many areas, ranging from the crystallization and melting of atomic systems, to optimal packing of objects and the sub-division of space. Here we study an analogous problem--that of determining the optimal shapes of closely packed compact strings. This problem is a mathematical idealization of situations commonly encountered in biology, chemistry and physics, involving the optimal structure of folded polymeric chains. We find that, in cases where boundary effects are not dominant, helices with a particular pitch-radius ratio are selected. Interestingly, the same geometry is observed in helices in naturally occurring proteins.
Similar articles
- A method for determining void arrangements in inverse opals.
Blanford CF, Carter CB, Stein A. Blanford CF, et al. J Microsc. 2004 Dec;216(Pt 3):263-87. doi: 10.1111/j.0022-2720.2004.01421.x. J Microsc. 2004. PMID: 15566498 - A priori crystal structure prediction of native celluloses.
Viëtor RJ, Mazeau K, Lakin M, Pérez S. Viëtor RJ, et al. Biopolymers. 2000 Oct 15;54(5):342-54. doi: 10.1002/1097-0282(20001015)54:5<342::AID-BIP50>3.0.CO;2-O. Biopolymers. 2000. PMID: 10935974 - The origin and extent of coarse-grained regularities in protein internal packing.
Bagci Z, Kloczkowski A, Jernigan RL, Bahar I. Bagci Z, et al. Proteins. 2003 Oct 1;53(1):56-67. doi: 10.1002/prot.10435. Proteins. 2003. PMID: 12945049 - Bond-orientational analysis of hard-disk and hard-sphere structures.
Senthil Kumar V, Kumaran V. Senthil Kumar V, et al. J Chem Phys. 2006 May 28;124(20):204508. doi: 10.1063/1.2193150. J Chem Phys. 2006. PMID: 16774354 - The world of beta- and gamma-peptides comprised of homologated proteinogenic amino acids and other components.
Seebach D, Beck AK, Bierbaum DJ. Seebach D, et al. Chem Biodivers. 2004 Aug;1(8):1111-239. doi: 10.1002/cbdv.200490087. Chem Biodivers. 2004. PMID: 17191902 Review.
Cited by
- Helices.
Chouaieb N, Goriely A, Maddocks JH. Chouaieb N, et al. Proc Natl Acad Sci U S A. 2006 Jun 20;103(25):9398-403. doi: 10.1073/pnas.0508370103. Epub 2006 Jun 12. Proc Natl Acad Sci U S A. 2006. PMID: 16769895 Free PMC article. - The depletion attraction: an underappreciated force driving cellular organization.
Marenduzzo D, Finan K, Cook PR. Marenduzzo D, et al. J Cell Biol. 2006 Dec 4;175(5):681-6. doi: 10.1083/jcb.200609066. J Cell Biol. 2006. PMID: 17145959 Free PMC article. Review. - Ground-state properties of tubelike flexible polymers.
Vogel T, Neuhaus T, Bachmann M, Janke W. Vogel T, et al. Eur Phys J E Soft Matter. 2009 Sep;30(1):7-18. doi: 10.1140/epje/i2009-10497-3. Epub 2009 Sep 24. Eur Phys J E Soft Matter. 2009. PMID: 19777280 - A pathway for mitotic chromosome formation.
Gibcus JH, Samejima K, Goloborodko A, Samejima I, Naumova N, Nuebler J, Kanemaki MT, Xie L, Paulson JR, Earnshaw WC, Mirny LA, Dekker J. Gibcus JH, et al. Science. 2018 Feb 9;359(6376):eaao6135. doi: 10.1126/science.aao6135. Epub 2018 Jan 18. Science. 2018. PMID: 29348367 Free PMC article. - Repeat protein architectures predicted by a continuum representation of fold space.
Hausrath AC, Goriely A. Hausrath AC, et al. Protein Sci. 2006 Apr;15(4):753-60. doi: 10.1110/ps.051971106. Epub 2006 Mar 7. Protein Sci. 2006. PMID: 16522802 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources