Maximum-likelihood density modification - PubMed (original) (raw)
Maximum-likelihood density modification
T C Terwilliger. Acta Crystallogr D Biol Crystallogr. 2000 Aug.
Abstract
A likelihood-based approach to density modification is developed that can be applied to a wide variety of cases where some information about the electron density at various points in the unit cell is available. The key to the approach consists of developing likelihood functions that represent the probability that a particular value of electron density is consistent with prior expectations for the electron density at that point in the unit cell. These likelihood functions are then combined with likelihood functions based on experimental observations and with others containing any prior knowledge about structure factors to form a combined likelihood function for each structure factor. A simple and general approach to maximizing the combined likelihood function is developed. It is found that this likelihood-based approach yields greater phase improvement in model and real test cases than either conventional solvent flattening and histogram matching or a recent reciprocal-space solvent-flattening procedure [Terwilliger (1999), Acta Cryst. D55, 1863-1871].
Figures
Figure 1
Sections of electron density obtained before and after density modification of phases obtained for IF-5A (Peat et al., 1998 ▶) phased using one Se atom in the asymmetric unit. Density modification was carried out by real-space solvent flattening and histogram matching or by maximum-likelihood solvent flattening. Values for real-space density modification were carried out using the program dm (Cowtan & Main, 1996 ▶), version 1.8, using solvent flattening with histogram matching. Starting phases were calculated with SOLVE (Terwilliger & Berendzen, 1999 ▶). The correlation coefficient between the map calculated based on the refined model of IF-5A and the starting map was 0.37, for the real-space modifed map it was 0.65 and for the maximum-likelihood map it was 0.79.
Similar articles
- Map-likelihood phasing.
Terwilliger TC. Terwilliger TC. Acta Crystallogr D Biol Crystallogr. 2001 Dec;57(Pt 12):1763-75. doi: 10.1107/s0907444901013749. Epub 2001 Nov 21. Acta Crystallogr D Biol Crystallogr. 2001. PMID: 11717488 Free PMC article. - General quadratic functions in real and reciprocal space and their application to likelihood phasing.
Cowtan K. Cowtan K. Acta Crystallogr D Biol Crystallogr. 2000 Dec;56(Pt 12):1612-21. doi: 10.1107/s0907444900013263. Acta Crystallogr D Biol Crystallogr. 2000. PMID: 11092927 - Reciprocal-space solvent flattening.
Terwilliger TC. Terwilliger TC. Acta Crystallogr D Biol Crystallogr. 1999 Nov;55(Pt 11):1863-71. doi: 10.1107/s0907444999010033. Acta Crystallogr D Biol Crystallogr. 1999. PMID: 10531484 Free PMC article. - Strategies for crystallization and structure determination of very large macromolecular assemblies.
Mueller M, Jenni S, Ban N. Mueller M, et al. Curr Opin Struct Biol. 2007 Oct;17(5):572-9. doi: 10.1016/j.sbi.2007.09.004. Epub 2007 Oct 25. Curr Opin Struct Biol. 2007. PMID: 17964135 Review. - EDM-DEDM and protein crystal structure solution.
Caliandro R, Carrozzini B, Cascarano GL, Giacovazzo C, Mazzone AM, Siliqi D. Caliandro R, et al. Acta Crystallogr D Biol Crystallogr. 2009 May;65(Pt 5):477-84. doi: 10.1107/S0907444909008609. Epub 2009 Apr 18. Acta Crystallogr D Biol Crystallogr. 2009. PMID: 19390153 Review.
Cited by
- Macromolecular X-ray structure determination using weak, single-wavelength anomalous data.
Bunkóczi G, McCoy AJ, Echols N, Grosse-Kunstleve RW, Adams PD, Holton JM, Read RJ, Terwilliger TC. Bunkóczi G, et al. Nat Methods. 2015 Feb;12(2):127-30. doi: 10.1038/nmeth.3212. Epub 2014 Dec 22. Nat Methods. 2015. PMID: 25532136 Free PMC article. - Crystal structure of Streptococcus pyogenes Csn2 reveals calcium-dependent conformational changes in its tertiary and quaternary structure.
Koo Y, Jung DK, Bae E. Koo Y, et al. PLoS One. 2012;7(3):e33401. doi: 10.1371/journal.pone.0033401. Epub 2012 Mar 30. PLoS One. 2012. PMID: 22479393 Free PMC article. - Crystal structure of novel dye-linked L-proline dehydrogenase from hyperthermophilic archaeon Aeropyrum pernix.
Sakuraba H, Satomura T, Kawakami R, Kim K, Hara Y, Yoneda K, Ohshima T. Sakuraba H, et al. J Biol Chem. 2012 Jun 8;287(24):20070-80. doi: 10.1074/jbc.M111.319038. Epub 2012 Apr 16. J Biol Chem. 2012. PMID: 22511758 Free PMC article. - A novel N-acetylglutamate synthase architecture revealed by the crystal structure of the bifunctional enzyme from Maricaulis maris.
Shi D, Li Y, Cabrera-Luque J, Jin Z, Yu X, Zhao G, Haskins N, Allewell NM, Tuchman M. Shi D, et al. PLoS One. 2011;6(12):e28825. doi: 10.1371/journal.pone.0028825. Epub 2011 Dec 12. PLoS One. 2011. PMID: 22174908 Free PMC article. - Purification, crystallization and preliminary X-ray diffraction analysis of the RNA-dependent RNA polymerase from Thosea asigna virus.
Ferrero D, Buxaderas M, Rodriguez JF, Verdaguer N. Ferrero D, et al. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2012 Oct 1;68(Pt 10):1263-6. doi: 10.1107/S1744309112037529. Epub 2012 Sep 29. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2012. PMID: 23027763 Free PMC article.
References
- Abrahams, J. P. (1997). Acta Cryst. D53, 371–376. - PubMed
- American Type Culture Collection (1992). Catalogue of Bacteria and Bacteriophages, 18th ed., pp. 271–272.
- Bricogne, G. (1984). Acta Cryst. A40, 410–445.
- Bricogne, G. (1988). Acta Cryst. A44, 517–545.
- Cowtan, K. D. & Main, P. (1993). Acta Cryst. D49, 148–157 - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources