Two distinct triggers for cycling of the lagging strand polymerase at the replication fork - PubMed (original) (raw)
. 2000 Nov 3;275(44):34757-65.
doi: 10.1074/jbc.M006556200.
Affiliations
- PMID: 10948202
- DOI: 10.1074/jbc.M006556200
Free article
Two distinct triggers for cycling of the lagging strand polymerase at the replication fork
X Li et al. J Biol Chem. 2000.
Free article
Abstract
There are two modes of DNA synthesis at a replication fork. The leading strand is synthesized in a continuous fashion in lengths that in Escherichia coli can be in excess of 2 megabases. On the other hand, the lagging strand is synthesized in relatively short stretches of 2 kilobases. Nevertheless, identical assemblies of the DNA polymerase III core tethered to the beta sliding clamp account for both modes of DNA synthesis. Yet the same lagging strand polymerase accounts for the synthesis of all Okazaki fragments at a replication fork, cycling repeatedly every 1 or 2 s from the 3'-end of the just-completed fragment to the 3'-end of the new primer. Several models have been invoked to account for the rapid cycling of a polymerase complex that can remain bound to the template for upward of 40 min. By using isolated replication protein-DNA template complexes, we have tested these models and show here that cycling of the lagging strand polymerase can be triggered by either the action of primase binding to the replisome and synthesizing a primer or by collision of the lagging strand polymerase with the 5'-end of the previous Okazaki fragment.
Similar articles
- tau couples the leading- and lagging-strand polymerases at the Escherichia coli DNA replication fork.
Kim S, Dallmann HG, McHenry CS, Marians KJ. Kim S, et al. J Biol Chem. 1996 Aug 30;271(35):21406-12. doi: 10.1074/jbc.271.35.21406. J Biol Chem. 1996. PMID: 8702922 - The E. coli DNA Replication Fork.
Lewis JS, Jergic S, Dixon NE. Lewis JS, et al. Enzymes. 2016;39:31-88. doi: 10.1016/bs.enz.2016.04.001. Epub 2016 May 13. Enzymes. 2016. PMID: 27241927 Review. - Prokaryotic DNA replication mechanisms.
Alberts BM. Alberts BM. Philos Trans R Soc Lond B Biol Sci. 1987 Dec 15;317(1187):395-420. doi: 10.1098/rstb.1987.0068. Philos Trans R Soc Lond B Biol Sci. 1987. PMID: 2894677 Review.
Cited by
- Metabolic cofactors NADH and FAD act as non-canonical initiating substrates for a primase and affect replication primer processing in vitro.
Julius C, Salgado PS, Yuzenkova Y. Julius C, et al. Nucleic Acids Res. 2020 Jul 27;48(13):7298-7306. doi: 10.1093/nar/gkaa447. Nucleic Acids Res. 2020. PMID: 32463447 Free PMC article. - Shining a Spotlight on DNA: Single-Molecule Methods to Visualise DNA.
Kaur G, Lewis JS, van Oijen AM. Kaur G, et al. Molecules. 2019 Jan 30;24(3):491. doi: 10.3390/molecules24030491. Molecules. 2019. PMID: 30704053 Free PMC article. Review. - Collision with duplex DNA renders Escherichia coli DNA polymerase III holoenzyme susceptible to DNA polymerase IV-mediated polymerase switching on the sliding clamp.
Le TT, Furukohri A, Tatsumi-Akiyama M, Maki H. Le TT, et al. Sci Rep. 2017 Oct 16;7(1):12755. doi: 10.1038/s41598-017-13080-1. Sci Rep. 2017. PMID: 29038530 Free PMC article. - RNA primer-primase complexes serve as the signal for polymerase recycling and Okazaki fragment initiation in T4 phage DNA replication.
Spiering MM, Hanoian P, Gannavaram S, Benkovic SJ. Spiering MM, et al. Proc Natl Acad Sci U S A. 2017 May 30;114(22):5635-5640. doi: 10.1073/pnas.1620459114. Epub 2017 May 15. Proc Natl Acad Sci U S A. 2017. PMID: 28507156 Free PMC article. - Frequent exchange of the DNA polymerase during bacterial chromosome replication.
Beattie TR, Kapadia N, Nicolas E, Uphoff S, Wollman AJ, Leake MC, Reyes-Lamothe R. Beattie TR, et al. Elife. 2017 Mar 31;6:e21763. doi: 10.7554/eLife.21763. Elife. 2017. PMID: 28362256 Free PMC article.