Huntingtin's WW domain partners in Huntington's disease post-mortem brain fulfill genetic criteria for direct involvement in Huntington's disease pathogenesis - PubMed (original) (raw)
. 2000 Sep 1;9(14):2175-82.
doi: 10.1093/hmg/9.14.2175.
Affiliations
- PMID: 10958656
- DOI: 10.1093/hmg/9.14.2175
Huntingtin's WW domain partners in Huntington's disease post-mortem brain fulfill genetic criteria for direct involvement in Huntington's disease pathogenesis
L A Passani et al. Hum Mol Genet. 2000.
Abstract
An elongated glutamine tract in mutant huntingtin initiates Huntington's disease (HD) pathogenesis via a novel structural property that displays neuronal selectivity, glutamine progressivity and dominance over the normal protein based on genetic criteria. As this mechanism is likely to involve a deleterious protein interaction, we have assessed the major class of huntingtin interactors comprising three WW domain proteins. These are revealed to be related spliceosome proteins (HYPA/FBP-11 and HYPC) and a transcription factor (HYPB) that implicate huntingtin in mRNA biogenesis. In HD post-mortem brain, specific antibody reagents detect each partner in HD target neurons, in association with disease-related N-terminal morphologic deposits but not with filter trapped insoluble-aggregate. Glutathione S:-transferase partner 'pull-down' assays reveal soluble, aberrantly migrating, forms of full-length mutant huntingtin specific to HD target tissue. Importantly, these novel mutant species exhibit exaggerated WW domain binding that abrogates partner association with other huntingtin isoforms. Thus, each WW domain partner's association with huntingtin fulfills HD genetic criteria, supporting a direct role in pathogenesis. Our findings indicate that modification of mutant huntingtin in target neurons may promote an abnormal interaction with one, or all, of huntingtin's WW domain partners, perhaps altering ribonucleoprotein function with toxic consequences.
Similar articles
- Huntingtin interacts with a family of WW domain proteins.
Faber PW, Barnes GT, Srinidhi J, Chen J, Gusella JF, MacDonald ME. Faber PW, et al. Hum Mol Genet. 1998 Sep;7(9):1463-74. doi: 10.1093/hmg/7.9.1463. Hum Mol Genet. 1998. PMID: 9700202 - Amyloid formation by mutant huntingtin: threshold, progressivity and recruitment of normal polyglutamine proteins.
Huang CC, Faber PW, Persichetti F, Mittal V, Vonsattel JP, MacDonald ME, Gusella JF. Huang CC, et al. Somat Cell Mol Genet. 1998 Jul;24(4):217-33. doi: 10.1023/b:scam.0000007124.19463.e5. Somat Cell Mol Genet. 1998. PMID: 10410676 - Interaction of the nuclear matrix protein NAKAP with HypA and huntingtin: implications for nuclear toxicity in Huntington's disease pathogenesis.
Sayer JA, Manczak M, Akileswaran L, Reddy PH, Coghlan VM. Sayer JA, et al. Neuromolecular Med. 2005;7(4):297-310. doi: 10.1385/NMM:7:4:297. Neuromolecular Med. 2005. PMID: 16391387 - Are there multiple pathways in the pathogenesis of Huntington's disease?
Aronin N, Kim M, Laforet G, DiFiglia M. Aronin N, et al. Philos Trans R Soc Lond B Biol Sci. 1999 Jun 29;354(1386):995-1003. doi: 10.1098/rstb.1999.0451. Philos Trans R Soc Lond B Biol Sci. 1999. PMID: 10434298 Free PMC article. Review. - Huntington's disease: from pathology and genetics to potential therapies.
Imarisio S, Carmichael J, Korolchuk V, Chen CW, Saiki S, Rose C, Krishna G, Davies JE, Ttofi E, Underwood BR, Rubinsztein DC. Imarisio S, et al. Biochem J. 2008 Jun 1;412(2):191-209. doi: 10.1042/BJ20071619. Biochem J. 2008. PMID: 18466116 Review.
Cited by
- Catalytic activity of Setd2 is essential for embryonic development in mice: establishment of a mouse model harboring patient-derived Setd2 mutation.
Chen S, Liu D, Chen B, Li Z, Chang B, Xu C, Li N, Feng C, Hu X, Wang W, Zhang Y, Xie Y, Huang Q, Wang Y, Nimer SD, Chen S, Chen Z, Wang L, Sun X. Chen S, et al. Front Med. 2024 Oct;18(5):831-849. doi: 10.1007/s11684-024-1095-1. Epub 2024 Aug 8. Front Med. 2024. PMID: 39115793 - CircHTT(2,3,4,5,6) - co-evolving with the HTT CAG-repeat tract - modulates Huntington's disease phenotypes.
Morandell J, Monziani A, Lazioli M, Donzel D, Döring J, Oss Pegorar C, D'Anzi A, Pellegrini M, Mattiello A, Bortolotti D, Bergonzoni G, Tripathi T, Mattis VB, Kovalenko M, Rosati J, Dieterich C, Dassi E, Wheeler VC, Ellederová Z, Wilusz JE, Viero G, Biagioli M. Morandell J, et al. Mol Ther Nucleic Acids. 2024 Jun 3;35(3):102234. doi: 10.1016/j.omtn.2024.102234. eCollection 2024 Sep 10. Mol Ther Nucleic Acids. 2024. PMID: 38974999 Free PMC article. - CAG repeat expansion in the Huntington's disease gene shapes linear and circular RNAs biogenesis.
Ayyildiz D, Bergonzoni G, Monziani A, Tripathi T, Döring J, Kerschbamer E, Di Leva F, Pennati E, Donini L, Kovalenko M, Zasso J, Conti L, Wheeler VC, Dieterich C, Piazza S, Dassi E, Biagioli M. Ayyildiz D, et al. PLoS Genet. 2023 Oct 13;19(10):e1010988. doi: 10.1371/journal.pgen.1010988. eCollection 2023 Oct. PLoS Genet. 2023. PMID: 37831730 Free PMC article. - Binding by calmodulin is coupled to transient unfolding of the third FF domain of Prp40A.
Díaz Casas A, Cordoba JJ, Ferrer BJ, Balakrishnan S, Wurm JE, Pastrana-Ríos B, Chazin WJ. Díaz Casas A, et al. Protein Sci. 2023 Apr;32(4):e4606. doi: 10.1002/pro.4606. Protein Sci. 2023. PMID: 36810829 Free PMC article. - SETD2 transcriptional control of ATG14L/S isoforms regulates autophagosome-lysosome fusion.
González-Rodríguez P, Delorme-Axford E, Bernard A, Keane L, Stratoulias V, Grabert K, Engskog-Vlachos P, Füllgrabe J, Klionsky DJ, Joseph B. González-Rodríguez P, et al. Cell Death Dis. 2022 Nov 12;13(11):953. doi: 10.1038/s41419-022-05381-9. Cell Death Dis. 2022. PMID: 36371383 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Research Materials
Miscellaneous