Tumor oxygenation in hormone-dependent tumors during vascular endothelial growth factor receptor-2 blockade, hormone ablation, and chemotherapy - PubMed (original) (raw)

. 2000 Aug 15;60(16):4556-60.

Affiliations

Tumor oxygenation in hormone-dependent tumors during vascular endothelial growth factor receptor-2 blockade, hormone ablation, and chemotherapy

N Hansen-Algenstaedt et al. Cancer Res. 2000.

Erratum in

Abstract

Tumor oxygenation is critical for tumor survival as well as for response to therapy, e.g., radiation therapy. Hormone ablation therapy in certain hormone-dependent tumors and antiangiogenic therapy lead to vessel regression and have also shown beneficial effects when combined with radiation therapy. These findings are counterintuitive because vessel regression should reduce oxygen tension (pO2) in tumors, decreasing the effectiveness of radiotherapy. Here we report on the dynamics of pO2 and oxygen consumption in a hormone-dependent tumor following hormone ablation and during treatment with an anti-VEGFR-2 monoclonal antibody (mAb) or a combination of doxorubicin and cyclophosphamide; the latter combination is not known to cause vessel regression at doses used clinically. Androgen-dependent male mouse mammary carcinoma (Shionogi) was implanted into transparent dorsal skin-fold chambers in male severe combined immunodeficient mice. Thirteen days after the tumors were implanted, mice were treated with antiangiogenic therapy (anti-VEGFR-2 mAb, 1.4 mg/30 g body weight), hormone ablation by castration, or doxorubicin (6.5 mg/kg every 7 days) and cyclophosphamide (100 mg/kg every 7 days). A non-invasive in vivo method was used to measure pO2 profiles and to calculate oxygen consumption rates (Q(O2)) in tumors. Tumors treated with anti-VEGFR-2 mAb exhibited vessel regression and became hypoxic. Initial vessel regression was followed by a "second wave" of angiogenesis and increases in both pO2 and Q(O2). Hormone ablation led to tumor regression followed by an increase in pO2 coincident with regrowth. Chemotherapy led to tumor growth arrest characterized by constant Q(O2) and elevated pO2. The increased pO2 during anti-VEGFR-2 mAb and hormone ablation therapy may explain the observed beneficial effects of combining antiangiogenic or hormone therapies with radiation treatment. Thus, understanding the microenvironmental dynamics is critical for optimal scheduling of these treatment modalities.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances