Functional and crystallographic characterization of Salmonella typhimurium Cu,Zn superoxide dismutase coded by the sodCI virulence gene - PubMed (original) (raw)
. 2000 Sep 15;302(2):465-78.
doi: 10.1006/jmbi.2000.4074.
Affiliations
- PMID: 10970746
- DOI: 10.1006/jmbi.2000.4074
Functional and crystallographic characterization of Salmonella typhimurium Cu,Zn superoxide dismutase coded by the sodCI virulence gene
A Pesce et al. J Mol Biol. 2000.
Abstract
The functional and three-dimensional structural features of Cu,Zn superoxide dismutase coded by the Salmonella typhimurium sodCI gene, have been characterized. Measurements of the catalytic rate indicate that this enzyme is the most efficient superoxide dismutase analyzed so far, a feature that may be related to the exclusive association of the sodCI gene with the most pathogenic Salmonella serotypes. The enzyme active-site copper ion is highly accessible to external probes, as indicated by quenching of the water proton relaxation rate upon addition of iodide. The shape of the electron paramagnetic resonance spectrum is dependent on the frozen or liquid state of the enzyme solution, suggesting relative flexibility of the copper ion environment. The crystal structure (R-factor 22.6%, at 2.3 A resolution) indicates that the dimeric enzyme adopts the quaternary assembly typical of prokaryotic Cu,Zn superoxide dismutases. However, when compared to the structures of the homologous enzymes from Photobacterium leiognathi and Actinobacillus pleuropneumoniae, the subunit interface of Salmonella Cu,Zn superoxide dismutase shows substitution of 11 out of 19 interface residues. As a consequence, the network of structural water molecules that fill the dimer interface cavity is structured differently from the other dimeric bacterial enzymes. The crystallographic and functional characterization of this Salmonella Cu,Zn superoxide dismutase indicates that structural variability and catalytic efficiency are higher in prokaryotic than in the eukaryotic homologous enzymes.
Copyright 2000 Academic Press.
Similar articles
- Evolutionary constraints for dimer formation in prokaryotic Cu,Zn superoxide dismutase.
Bordo D, Matak D, Djinovic-Carugo K, Rosano C, Pesce A, Bolognesi M, Stroppolo ME, Falconi M, Battistoni A, Desideri A. Bordo D, et al. J Mol Biol. 1999 Jan 8;285(1):283-96. doi: 10.1006/jmbi.1998.2267. J Mol Biol. 1999. PMID: 9878406 - Single mutations at the subunit interface modulate copper reactivity in Photobacterium leiognathi Cu,Zn superoxide dismutase.
Stroppolo ME, Pesce A, D'Orazio M, O'Neill P, Bordo D, Rosano C, Milani M, Battistoni A, Bolognesi M, Desideri A. Stroppolo ME, et al. J Mol Biol. 2001 May 4;308(3):555-63. doi: 10.1006/jmbi.2001.4606. J Mol Biol. 2001. PMID: 11327787 - The dimeric assembly of Photobacterium leiognathi and Salmonella typhimurium SodC1 Cu,Zn superoxide dismutases is affected differently by active site demetallation and pH: an analytical ultracentrifuge study.
Catacchio B, D'Orazio M, Battistoni A, Chiancone E. Catacchio B, et al. Arch Biochem Biophys. 2008 Mar 1;471(1):77-84. doi: 10.1016/j.abb.2007.12.010. Epub 2008 Jan 7. Arch Biochem Biophys. 2008. PMID: 18179768 - Prokaryotic Cu,Zn superoxide dismutases.
Desideri A, Falconi M. Desideri A, et al. Biochem Soc Trans. 2003 Dec;31(Pt 6):1322-5. doi: 10.1042/bst0311322. Biochem Soc Trans. 2003. PMID: 14641054 Review. - Probing the structural basis for enzyme-substrate recognition in Cu,Zn superoxide dismutase.
Fisher CL, Hallewell RA, Roberts VA, Tainer JA, Getzoff ED. Fisher CL, et al. Free Radic Res Commun. 1991;12-13 Pt 1:287-96. doi: 10.3109/10715769109145797. Free Radic Res Commun. 1991. PMID: 1649096 Review.
Cited by
- Unique underlying principles shaping copper homeostasis networks.
Novoa-Aponte L, Argüello JM. Novoa-Aponte L, et al. J Biol Inorg Chem. 2022 Sep;27(6):509-528. doi: 10.1007/s00775-022-01947-2. Epub 2022 Jul 8. J Biol Inorg Chem. 2022. PMID: 35802193 Free PMC article. Review. - Cytoplasmic Copper Detoxification in Salmonella Can Contribute to SodC Metalation but Is Dispensable during Systemic Infection.
Fenlon LA, Slauch JM. Fenlon LA, et al. J Bacteriol. 2017 Nov 14;199(24):e00437-17. doi: 10.1128/JB.00437-17. Print 2017 Dec 15. J Bacteriol. 2017. PMID: 28924031 Free PMC article. - Structural, Functional, and Immunogenic Insights on Cu,Zn Superoxide Dismutase Pathogenic Virulence Factors from Neisseria meningitidis and Brucella abortus.
Pratt AJ, DiDonato M, Shin DS, Cabelli DE, Bruns CK, Belzer CA, Gorringe AR, Langford PR, Tabatabai LB, Kroll JS, Tainer JA, Getzoff ED. Pratt AJ, et al. J Bacteriol. 2015 Dec;197(24):3834-47. doi: 10.1128/JB.00343-15. Epub 2015 Oct 12. J Bacteriol. 2015. PMID: 26459556 Free PMC article. - Periplasmic superoxide dismutase SodCI of Salmonella binds peptidoglycan to remain tethered within the periplasm.
Tidhar A, Rushing MD, Kim B, Slauch JM. Tidhar A, et al. Mol Microbiol. 2015 Sep;97(5):832-843. doi: 10.1111/mmi.13067. Epub 2015 Jun 12. Mol Microbiol. 2015. PMID: 25998832 Free PMC article. - Superoxide dismutases and superoxide reductases.
Sheng Y, Abreu IA, Cabelli DE, Maroney MJ, Miller AF, Teixeira M, Valentine JS. Sheng Y, et al. Chem Rev. 2014 Apr 9;114(7):3854-918. doi: 10.1021/cr4005296. Epub 2014 Apr 1. Chem Rev. 2014. PMID: 24684599 Free PMC article. Review. No abstract available.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Research Materials