Rho family GTPases: more than simple switches - PubMed (original) (raw)
Review
Rho family GTPases: more than simple switches
M Symons et al. Trends Cell Biol. 2000 Oct.
Abstract
Rho family GTPases control a large variety of biological processes. Cycling of Rho proteins between the GDP-bound and the GTP-bound state is controlled by several classes of regulatory proteins. In this review, we discuss the signal-transduction mechanisms that control these regulators. We will emphasize the subcellular localization of Rho GTPases and their regulatory proteins and the role of GTP hydrolysis in signal transmission.
Similar articles
- Off the beaten paths: alternative and crosstalk regulation of Rho GTPases.
Boulter E, Estrach S, Garcia-Mata R, Féral CC. Boulter E, et al. FASEB J. 2012 Feb;26(2):469-79. doi: 10.1096/fj.11-192252. Epub 2011 Oct 28. FASEB J. 2012. PMID: 22038046 Review. - Structural and functional characterization of fast-cycling RhoF GTPase.
Sugawara R, Ueda H, Honda R. Sugawara R, et al. Biochem Biophys Res Commun. 2019 May 28;513(2):522-527. doi: 10.1016/j.bbrc.2019.04.018. Epub 2019 Apr 10. Biochem Biophys Res Commun. 2019. PMID: 30981505 - Biochemical assays to characterize Rho GTPases.
Jaiswal M, Dubey BN, Koessmeier KT, Gremer L, Ahmadian MR. Jaiswal M, et al. Methods Mol Biol. 2012;827:37-58. doi: 10.1007/978-1-61779-442-1_3. Methods Mol Biol. 2012. PMID: 22144266 - RhoD localization and function is dependent on its GTP/GDP-bound state and unique N-terminal motif.
Blom M, Reis K, Aspenström P. Blom M, et al. Eur J Cell Biol. 2018 Aug;97(6):393-401. doi: 10.1016/j.ejcb.2018.05.003. Epub 2018 May 16. Eur J Cell Biol. 2018. PMID: 29776664 - Biochemical analyses of the Wrch atypical Rho family GTPases.
Shutes A, Berzat AC, Chenette EJ, Cox AD, Der CJ. Shutes A, et al. Methods Enzymol. 2006;406:11-26. doi: 10.1016/S0076-6879(06)06002-2. Methods Enzymol. 2006. PMID: 16472646 Review.
Cited by
- Identifying the Prognostic Risk Factors of Synaptojanin 2 and Its Underlying Perturbations Pathways in Hepatocellular Carcinoma.
Zhang R, Mo WJ, Huang LS, Chen JT, Wu WZ, He WY, Feng ZB. Zhang R, et al. Bioengineered. 2021 Dec;12(1):855-874. doi: 10.1080/21655979.2021.1890399. Bioengineered. 2021. PMID: 33641617 Free PMC article. - Biochemical and cellular implications of a dual lipase-GEF function of phospholipase D2 (PLD2).
Gomez-Cambronero J. Gomez-Cambronero J. J Leukoc Biol. 2012 Sep;92(3):461-7. doi: 10.1189/jlb.0212073. Epub 2012 Jul 2. J Leukoc Biol. 2012. PMID: 22750546 Free PMC article. Review. - Characterization of membrane-localized and cytosolic Rac-GTPase-activating proteins in human neutrophil granulocytes: contribution to the regulation of NADPH oxidase.
Geiszt M, Dagher MC, Molnár G, Havasi A, Faure J, Paclet MH, Morel F, Ligeti E. Geiszt M, et al. Biochem J. 2001 May 1;355(Pt 3):851-8. doi: 10.1042/bj3550851. Biochem J. 2001. PMID: 11311150 Free PMC article. - SH3 domain-based phototrapping in living cells reveals Rho family GAP signaling complexes.
Okada H, Uezu A, Mason FM, Soderblom EJ, Moseley MA 3rd, Soderling SH. Okada H, et al. Sci Signal. 2011 Nov 29;4(201):rs13. doi: 10.1126/scisignal.2002189. Sci Signal. 2011. PMID: 22126966 Free PMC article. - Ran's C-terminal, basic patch, and nucleotide exchange mechanisms in light of a canonical structure for Rab, Rho, Ras, and Ran GTPases.
Neuwald AF, Kannan N, Poleksic A, Hata N, Liu JS. Neuwald AF, et al. Genome Res. 2003 Apr;13(4):673-92. doi: 10.1101/gr.862303. Genome Res. 2003. PMID: 12671004 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources