Dimerization with retinoid X receptors promotes nuclear localization and subnuclear targeting of vitamin D receptors - PubMed (original) (raw)

. 2000 Dec 29;275(52):41114-23.

doi: 10.1074/jbc.M003791200.

Affiliations

Free article

Dimerization with retinoid X receptors promotes nuclear localization and subnuclear targeting of vitamin D receptors

K Prüfer et al. J Biol Chem. 2000.

Free article

Abstract

The vitamin D receptor (VDR) acts as heterodimer with the retinoid X receptor alpha (RXR) to control transcriptional activity of target genes. To explore the influence of heterodimerization on the subcellular distribution of these receptors in living cells, we developed a series of fluorescent-protein chimeras. The steady-state distribution of the yellow fluorescent protein-RXR was more nuclear than the unliganded green fluorescent protein (GFP)-VDR. Coexpression of RXR-blue fluorescent protein (BFP) promoted nuclear accumulation of GFP-VDR by influencing both nuclear import and retention. Fluorescence resonance energy transfer microscopy (FRET) demonstrated that the unliganded GFP-VDR and RXR-BFP form heterodimers. The increase in nuclear heterodimer content correlated with an increase in basal transcriptional activity. FRET also revealed that calcitriol induces formation of multiple nuclear foci of heterodimers. Mutational analysis showed a correlation between hormone-dependent nuclear VDR foci formation and DNA binding. RXR-BFP also promoted hormone-dependent nuclear accumulation and intranuclear foci formation of a nuclear localization signal mutant receptor (nlsGFP-VDR) and rescued its transcriptional activity. Heterodimerization mutant RXR failed to alter GFP-VDR and nlsGFP-VDR distribution or activity. These experiments suggest that RXR has a profound effect on VDR distribution. This effect of RXR to promote nuclear accumulation and intranuclear targeting contributes to the regulation of VDR activity and probably the activity of other heterodimerization partners.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

Substances

LinkOut - more resources